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s.heres to determine their small nd large strain response, including the initial position
and subsequent translation and distortion of yield surfaces. " .

Tnroughout the research, comparisons were made between analytical predictions and
experimental measurements on sands and other granular media reported in the literature.
.n addition, several computer controlled, hollow-cylinder, monotonic and cyclic axial-
torsional tests were conducted on glass bead specimens, along stress paths similar to
those used in the Distinct Element simulations, to verify and supplement the results of
the calculations.

Finally, a constitutive law for granular media-is--proposed and its-main-featureslare
discussed. The law is basically the stress-strain equivalent of the force-deformation
-,odel for the contact between two spheres~developed at RPIenhanced to incorporate
dilation and the distortion of yield surfaces due to prestrain which has been observed in
granular media. The proposed stress-strain law includes an infinite number of yield
surfaces of conical shape initiallyparallel to each other,, as well as modified normality
and kinematic strain hardening rules.
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ABSTRACT

A 3-year (1986-89) micromechanical research at Rensselaer Polytechnic

Institute (RPI) on the behavior and modelling of granular media is summarized.

The final objective is to develop a constitutive law for granular soil based on the

I particulate nature of the material.

This is accomplished by a systematic, mostly analytical approach to the

problem, starting from the response of the contact between two elastic rough

3 spheres subjected to arbitrary normal and tangential forces, and continuing with the

response of regular and random arrays of spheres. The following tasks were

completed: a) study and compilation of the differential stress-strain relationships of

several regular arrays of identical quartz spheres; b) use of the Self Consistent and

Nonlinear Finite Element methods to calculate the small strain, monotonic and

cyclic stress-strain behavior of random/regular arrays of identical quartz spheres

loaded isotropically and anisotropically, including wave velocity predictions; and c)

3 use of Nonlinear Distinct Element simulations of two-dimensional random arrays of

quartz spheres to determine their small and large strain response, including the

initial position and subsequent translation and distortion of yield surfaces.

Throughout the research, comparisons were made between analytical

predictions and experimental measurements on sands and other granular media

3 reported in the literature. In addition, several computer controlled, hollow-

cylinder, monotonic and cyclic axial-torsional tests were conducted on glass bead

specimens, along stress paths similar to those used in the Distinct Element

3 simulations, to verify and supplement the results of the calculations.
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Finally, a constitutive law for granular media is proposed and its main

features are discussed. The law is basically the stress-strain equivalent of the

forc--deformation model for the contact between two spheres developed at RPI,

enhanced to incorporate dilation and the distortion of yield surfaces due to prestrain

which has been observed in granular media. The proposed stress-strain law

includes an infinite number of yield surfaces of conical shape initial parallel to each

other, as well as modified normality and kinematic strain hardening rules.I'
I
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1. INTRODUCTION

U This final report presents a summary of the work conducted by the authors in

a three year (1986-89) AFOSR sponsored micromechanical research at RPI on the

behavior and modelling of granular media. Four progress reports were submitted to

AFOSR for years 1986-87 and 1987-88 and are included in the list of references

(Petrakis and Dobry 1987, 1987a, 1988, and Petrakis, Dobry and Ng 1988). The

final objective of the research is to develop a constitutive model for granular soils

expressed in traditional continuum mechanics terms, but grounded on the

particulate micromechanical behavior of the material. As sketched in the flow chart

of Table 1, this is accomplished by a systematic, mostly analytical, approach to the

problem, starting from the response of the contact between two elastic, rough

I spheres subjected to arbitrary normal and tangential forces, and continuing with the

response of regular and random arrays of spheres. Hollow-cylindrical axial-

torsional tests on glass beads are also performed to supplement the analytical

calculations. These analytical and experimental results are then used to formulate

the desired constitutive model for granular media.

I The problem of the contact between two identical spheres, originally solved by

Mindlin and Deresiewicz for some special cases, had been solved at RPI in 1984 for

arbitrary loading through an incremental elastic-plastic model. This general

solution was then approximately adapted for unequal spheres, and implemented and

used in this research to study a number of regular and random arrays of quartz

spheres utilizing several analytical and numerical techniques. These techniques

include the pressure dependent Self-Consistent method, the nonlinear Finite

Element Method, and the nonlinear Distinct Element Method. The results obtained

I
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I ranged from small to large strains and included both monotonic and cyclic loading

response.

Definite results and con-lusions are presented in this report for most of the

tasks included in Table 1. This includes the two-sphere problem, the study of

regular arrays, and the use of the Self-Consistent and Finite Element methods to

I study random arrays of spheres.

The purpose of the experimental effort was to verify the analytical and

numerical predictions. This experimental task, also included in Table 1, consisted

of eight hollow--cylinder axial torsional tests on glass beads to observe the shape and

evolution of yield surfaces of granular media in stress space. Distinct Element

numerical simulations on random arrays of spheres were also conducted along the

same stress paths used in the experiments. Both experiments and simulations

suggest that the yield surface(s) of a granular medium distort(s) in the direction of

U loading but not in other directions, and this finding is incorporated into the

constitutive model proposed at the end of the report.

I

I 1.1 Brief Review of Constitutive Relations in Soils

I
Over the past 30 years considerable attention has been given to the

development of constitutive laws for engineering materials (Hill 1950, Prager 1955,

Mroz 1967, Dafalias and Popov 1976, Drucker and Palgen 1981). Among other

I formulations the existing models are based on the theories of elasticity,

hypoelasticity, plasticity and viscoplasticity. Despite the large number of models,

there is no consensus yet within the research community on the best approach.

I
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U However, the models based on the theory of plasticity or viscoplasticity appear to be

* most promising.

Most of the proposed models for soils are based on the incremental theory of

plasticity. In these, the total strain increment is equal to the sum of elastic and

plastic strain increments, dijj = dE1j + dcj, with these increments being rate

independent (Drucker and Prager 1952, Reyes 1966, Chen 1975, Lade and Duncan

1975, Prevost 1978, Hardin 1978).

A variety of associative and non-associative flow rules have been proposed for

the plastic strain increment, of the form:

Idc~j = dA a (10aij (1)

I where dA is a coefficient of proportionality and g(oij) is the plastic potential

function, which may or may not coincide with the yield function, f(aij) at which

plastic strains develop.

In the simplest type of elastic-plastic model, there is only one yield surface.

States of stress below that surface are assumed to be elastic. However, soils develop

I plastic strains even at very small strains; to allow for this behavior, a wide variety

3 of strain-hardening laws have been proposed, including families of yield surfaces

and specific strain hardening yield rules. In some of these models the elastic region

is completely eliminated, allowing for plastic flow at very low strain levels (Prevost

1978).I An important aspect of the development of elastic-plastic models is the

i definition of the strain hardening law, which defines the modifications in the yield

surface(s) in the course of plastic flow. This is critical for reversible loading, where

U
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the type of strain hardening determines the stress-strain behavior after load

reversals. In some of the older general plasticity models developed for monotonic

loading, isotropic hardening is assumed (Hill 1950), with the yield surface(s)

expanding in size as the stresses increase. With isotropic hardening, a large amount

of load reversal is required for additional yielding to occur, in contradiction with the

observed behavior in the laboratory.

A better alternative is provided by the kinematic hardening law proposed by

I Ishlinsky (1954) and Prager (1955), which assumes that the yield surface translates

in stress space without changing shape or size during flow. Models with kinematic

strain hardening are in better agreement with experimental results than models with

isotropic hardening.

Some of the earliest and most popular formulations for sand have been based

I on the "cap model" of DiMaggio and Sandler (1971). As versatile as "cap models"

may be, they have not been successful in accurately modelling cyclic loading

conditions.

Similar limitations apply to other models (Bala. Rohani 1979), and can

be argued that the existing plasticity models of the "cap" type are only adequate for

I monotonic loading of isotropic, soil. In an effort to overcome this, a variety of

1 constitutive laws have been proposed which incorporate a combination of isotropic

and kinematic hardening (Mroz 1967, Lade 1977). Although these more recent

theories represent a considerable advancement over the "cap" models, they too have

drawbacks. These include the use of "a priori" geometrical hardening rules, and the

I fact that they do not predict either the inherent, elastic anisotropy of the soil or the

stiffening effect measured after many load reversals.

I
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This elastic (inherent) anisotropy, which is most significant for anisotropically

consolidated sand, has been measured in sand by Stokoe and his coworkers (Knox et

al. 1982, Koppermann et al. 1982), while Dafalias (1979) has discussed its

I implications for modelling. In their experiments Stokoe and his coworkers proved

that the wave propagation velocity depends on the principal stresses in the direction

of wave propagation and particle motion (Fig. 1) and not on the mean stress as

proposed by Hardin and Black (1964) and Seed and Idriss (1970). This elastic

U anisotropy has not, to the best of the authors' knowledge, yet been incorporated into

any plasticity model. The existing plasticity models also do not predict the

dramatic stiffening occurring in a granular medium which has been precycled for

thousands or millions of cycles at small strains (f - 6 X 10- 4 ) without experiencing

significant volumetric changes (Fig. 2, see also Drnevich 1967). These two examples

Iare the result of micromechanical phenomena and are best modelled once these

micromechanical phenomena are understood.

Another way to say the same thing is to state that until now plasticity models

for soil have been mostly phenomenological. They have been typically developed

from a manageable mathematical formulation, and they have been calibrated and

modified by interpreting macroscopic experimental results. The underlying

micromechanical phenomena have not been systematically considered. As a result,

the existing plasticity models for soils are in need of constant refinement when

needed for cases very different from the one the model was originally developed and

calibrated for.

n The current situation in metal plasticity is quite different. Although

modelling of the nonlinear behavior of metals started on a similar phenomenological

basis, there has been a shift in the last 20 years or so toward formulating the metal

I
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response with due consideration of micromechanical principles (Budiansky and Wu

1962, Lin and Ito 1965, 1966). Recently this has been enhanced by specific

experiments and micromechanical (electron microscopy) measurements (Stout et al.

1985, Helling et al. 1986). The situation is analogous in the modelling of more

complex composite materials, where experiments and micromechanical analytical

simulations are combined to create the corresponding constitutive law (Dvorak

1987, Dvorak et al. 1988).

Although metal properties are not pressure dependent and their material

symmetry does not change as much with loading as in soils, the stress-strain

behavior of metals and soils is similar in several respects. As a result, most current

soil plasticity models are modified versions of popular phenomenological metal

models. Notable examples include the Mroz (1967) model for metals and the

I Prevost (1978) model for undrained loading of clay, as well as the bounding surface

model used by Dafalias and Herrmann (1982). Unfortunately, no plasticity model

exists for soil resulting from the combination of specific laboratory experiments and

micromechanical principles including numerical simulations of the behavior of

granular arrays under load.

i Recently, the geotechnical groups at the University of Colorado (Klisinski et

al. 1988), US Army WES (Peters 1988), and University College of London (Arthur

et al. 1988), working together in a concentrated effort, developed a constitutive law

which is based on a series of innovative 3-D laboratory experiments performed for

this purpose (Alawi et al. 1988). This may be the first time that a comprehensive

I experimental investigation is performed in Soil Mechanics which attempts to verify

widely accepted rules and assumptions related to hardening, yield surface shape

during loading, normality rule, etc (see Fig. 3). The resulting model (Klisinski et al.

I
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I 1988) is based on the bounding surface model of Dafalias and Popov (1976) and on

the theory of "fuzzy" sets. The model was used with moderate success to predict

the behavior of sand in the International Workshop on Constitutive Laws at Case

Western Reserve University (Saada 1987).

In the above approach many lab specimens were used to define one yield

surface, which is satisfactory for monotonic loading but omits the effect of

prestraining which in metals is known to play an important role in cyclic loading.

Moreover, the development of the corresponding law is again phenomenological and

includes no micromechanical considerations, relying instead on the interpretation of

the macroscopic results of the above innovative experiments.I

K 1.2 Micromechanical Interpretation of the Deformation Mechanism in

Polycrystalline Aggregates.

For some purposes, granular soil can be modelled as a pressure-dependent

polycrystalline aggregate. Regular arrays of identical spheres studied by

I Deresiewicz (1958, 1958a) and Petrakis and Dobry (1989) behave like pressure-

dependent single crystals. Random arrangements of these regular arrays

(polycrystals) have been successfully used to simulate the small strain behavior of

sand by means of the Self Consistent and Finite Element techniques (Petrakis and

Dobry 1986, 1987). Thus it is useful, from the viewpoint of the development of a

I constitutive law for granular soil, to review some findings on polycrystalline

aggregates such as metals.

I
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U Starting in the 1950's, researchers have simulated the elastic-plastic,

stress-strain behavior of such polycrystalline aggregates through analytical,

semi-analytical, and numerical micromechanical techniques (Hershey 1954,

3 Budiansky and Wu 1962, Lin and Ito 1965, 1966, Hill 1967, Canova et al. 1985).

This micromechanical work has not supported the continuum mechanics hypotheses

I of either pure kinematic or isotropic strain hardening hardening behavior, but has

predicted instead a combined translation (kinematic hardening) and distortion of

the yield surfaces in the direction of loading. This micromechanical prediction has

been verified by several experiments (Naghdi et al. 1958, Phillips 1968, Phillips and

Tang 1972, Phillips et al. 1974).

3 The micromechanical approach commonly used to analyze the elastic-plastic

behavior of polycrystals assumes that they are an assemblage of equal anisotropic

I monocrystals (single crystals), randomly oriented in space (Fig. 4a). This results in

an isotropic polycrystal if the spatial distribution of the orientations is statistically

uniform. A monocrystal has n sliding planes( *), with each plane having m sliding

i directions, and with every sliding direction corresponding to a pair of parallel yield

planes in stress space. In the limiting case in which an infinite number of possible

I crystal orientations is assumed, this infinitely sided polyhedron becomes a curved

yield surface.

i(*) In the literature dealing with polycrstals, they are called "slip planes." Here

they will be referred to as "sliding planes," as we will reserve the use of the

U word "slip" to denote a different phenomenon when discussing the contact

between two elastic rough spheres

I
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Plastic strain in the aggregate is caused by sliding of one of the sliding planes

occuring in a family of similarly oriented crystals. After sliding has occurred in a

Inumber of these families, each surface of the polyhedron mentioned above expands

and shifts differently. These sliding directions are all more or less parallel to the

direction of the plane of the maximum shear stress acting on the aggregate. As the

3 aggregate is loaded further beyond the elastic range, more crystals and crystal

families slide, and increasingly more yield planes pass through the loading point on

I the yield surface. These yield planes of different orientations intersect at that point

on the yir 'd surface and form a corner or vertex (Fig 4b).

This vertex, which is particularly important for stress-strain modelling during

cyclic loading, is not easily observed during testing. One reason is that the very

large number of monocrystal orientations smoothes the effect, which appears as a

"smooth vertex" or distortion of the yield surface iu the direction of loading, rather

than a sharp corner. Most important, this "vertex" does not appear at all if purely

monotonic tests are performed, but it shows up once the loading is reversed at least

3 once. This distortion of the yield surface associated with the vertex reflects the

"memory" the material has of prestraining in the direction of loading. The

existence of this yield surface distortion in metals has been observed experimentally

by a number of researchers in several polycrystalline aggregates, including

I aluminum, aluminum alloys, brass and magnesium (Naghdi et al. 1958, Phillips

3 1968, Kelley and Hosford 1968, Phillips et al. 1970, Shiratori et al. 1976, Helling

et al. 1986).

The late Professor Phillips developed a testing procedure to seek and compute

the initial and subsequent yield surfaces of aluminum and their motion in stress

I space. This procedure is now widely used in experimental plasticity studies of

I
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I metals and metal matrix composites (Rousset 1985, Stout et al. 1985, Dvorak 1987,

Dvorak et al. 1988). The experiments are typically conducted by applying a

combination of tensile (a) and torsional shear (-r) stresses to a hollow cylindrical

3 specimen, in a sequence similar to that shown in Fig. 5. In these tests, the loading

stops and reverses as soon as a point on the yield surface is reached - so that the

U entire yield surface may be determined - as defined by a certain deviation from the

linear portion of the stress-strain curve. Fig. 6 clearly shows the characteristic

distortion of the initial yield surface in the direction of loading. While the yield

surface (for a given temperature) in the r-a space is an ellipse, the subsequent yield

surfaces have distorted and become pointed in the direction of loading (a), while

3becoming flatter in the opposite direction (b). As a result, the size of the yield

surface shrinks in the direction of loading while staying constant in the other

direction.

Laboratory results such as these have made possible the linking of the

micromechanical theory with experiments (Stout et al. 1985, Helling et al. 1986),

3 and have led to a new family of constitutive laws (Phillips and Weng 1975,

Eisenberg and Yen 1981, 1984, Yen and Eisenberg 1987) which incorporate the

above findings.

I
3 1.3 Micrcmechanica! Behavior of Granular Soil

I As mentioned earlier, the behavior of a sand aggregate is similar to that of a

3 polycrystal, since the individual groups of grains or grain packings within the sand

may be considered in first approximation to behave like randomly oriented crystals.U
I
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3 The main difference is that the properties of these packings are now pressure

dependent. For example, a simple cubic array of equal spheres (Fig. 7) is a

I pressure-dependent monocrystal having three sliding planes (n=3), with each

sliding plane containing two sliding directions 900 apart (m=2).

As in the case of polycrystalline aggregates, each sliding plane in each of the

3 packings corresponds to a pair of parallel yield planes in stress space. The

macroscopic yield surface of the material is the surface bounding the yield

I polyhedron, the sides of which are formed by the intersection of these yield planes.

Plastic strain, defined as irrecoverable deformation, is the result of a slide in at least

one of these packings. A conjecture to be discussed later in this report is that the

3 yield surface of a granular medium distorts during loading, and forms a vertex in

the direction of loading through a mechanism similar to those in metals.

I Granular media, despite this similarity with metals, are also significantly

different due to the pressure-dependent properties of the packing. Specifically, the

amount of slide in each packing depends on the normal pressure acting on the plane,

as do the moduli and the symmetry of the material. Moreover, granular media

experience dilation under shear which is not necessarily present in polycrystalline

I aggregates. Finally, soils exhibit nonlinear inelastic stress-strain behavior even at

small strains. Therefore, strictly speaking, a cohesionless aggregate does not have a

clear linear elastic region followed by a region in which permanent deformations

i occur, like the aluminum tested by Phillips. However, granular soils experience

little or not sliding (gross sliding) between particle contacts, and thus exhibit

3 nondestructive behavior and no dilation up to the so called "threshold shear strain,"

,'t = 10-4 (Dobry et al. 1982). Therefore, in granular soils, loading below -ft has

I some important features in common with elastic loading in metals before the initial

I
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U yield surface is reached. However, in soils the loading below -rt, though

nondestructive, is inelastic and does include some plastic yielding due to localized

slipping within the intergranular contact areas. If this localized slipping effect

3 below yt is neglected in first approximation, one possible definition of an initial

yield surface in a cohesionless soils could be the surface in stress space where Yt is

reached, there is significant sliding between particles, and permanent volumetric

deformation starts occurring due to shear. This may be measured by monitoring the

volume in drained experiments or the residual pore pressure in undrained

3 experiments. These inelastic deformations are typically the result of dilatancy in

the granular medium and would not occur without this sliding between particles.I
I
II
I
I
I
I
I
I
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1 2. THE MICROMECHANICAL APPROACH

I 2.1 Problem of Contact Between Two Elastic Rough SpheresI
The problem of the contact between two elastic rough spheres is of great

I importance to this research. The small strain behavior of a granular medium

formed by spherical particles is controlled jointly by the elasticity and the friction

coefficient of the contacts, with friction becoming more important at very large

shear strains approaching failure of the medium. Therefore, a brief review of the

contact problem will be presented herein, as well as some aspects of the recent

numerical solution for the contact problem developed at RPI.

The problem of contact of two elastic, elliptical, semi-infinite bodies subjected

to a normal force was first studied by Hertz (1882), with this solution including as a

special case the normal compression of two spheres. Hertz demonstrated for the

first time that the normal force-deformation behavior at the contact is nonlinear

elastic. Subsequently, all work on the same topic was concerned with the loading of

bodies by normal forces, until Cattaneo (1938), Mindlin (1949), and Mindlin and

I Deresiewicz (1953) addressed the problem of the contact of two identical elastic,

I rough spheres subjected to a combination of normal and tangential forces, and

presented a number of closed form solutions for each of several specific load

histories. Walton (1978) studied the problem of the oblique compression of two

elastic, rough spheres when both tangential and normal forces are applied

I simultaneously. More recently, Szalwinski (1985) addresed the problem of the

contact of two identical elastic bodies which form an elliptical contact area, and

compared his solution to those in the literature.

I
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I The general case of two identical, elastic, rough spheres subjccted to a normal

force N followed by a tangential force T (Fig. 8), solved by Cattaneo (1938) and

Mindlin (1949), is a problem of the linear theory of elasticity. Since the solution

yields an infinite shear stress at the edge of the contact area, a slip needs to be

prescribed at this edge, which transforms the formulation into a mixed boundary

value problem where contact stresses and displacements are prescribed. This

permanent set produced by the slip induces a nonlinear behavior, which is different

from that computed by Hertz, 3ince it is accompanied by energy dissipation. As

demonstrated by Mindlin and Deresiewicz (1953), due to this slip now the

force-deformation relation depends on the entire past history of the loading as well

as on the instantaneous rates of change of the normal and tangential forces. A

typical force-deformation curve for two spheres in contact under a constant normal

I force, N, subjected to a monotonicaily increasing tangential force, T, is shown in

Fig. 8b, where the nonlinear, yielding behavior can be clearly observed.

All of the above suggest that a phenomenological plasticity model could

describe this nonlinear behavior. Such a formulation wo'ild provide the long

awaited (Deresiewicz 1958a) "general" solution to the problem of the contact of two

U elastic, rough spheres subjected to an arbitrary force history, which in turn could be

used in numerical simulations. This has been achieved recently at RPI through a

constitutive law (Seridi and Dobry 1984, Dobry et al. 1989) for the force-

deformation behavior of two identical elastic, rough spheres in contact under a

combination of arbitrarily varying normal and tangential forces, which was

I implemented through program CONTACT (Dobry et al. 1989). This model is based

on the incremental theory of plasticity, uses an infinite number of yield surfaces and

assumes kinematic hardening. Therefore, its main features are very similar to those

I
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i of the plasticity stress-strain models for engineering materials described previously.

These features of the RPI contact model are presented in detail by Seridi and Dobry

1 (1984) and Dobry et al. (1989), and are summarized below:

Yield Condition:I
(Tx - x) 2+ (Ty - y) 2= f2(N - Ni)' (2)

where R = x i + y j + Ni k is the position vector of the apex of the conic surface,

and 1 = Txi + Tyj + Nk is the current force point (Fig. 9). Since the contact of

the two spheres subjected to an increasing tangential force under constant N is

continuously slipping, there must be an infinite number of yield cones. The elastic

I region is in the inside of the cone w,.ose apex is at the current force point. The

failure surface is the outer cone, defined as follows:

T TW + T 2= f2N (3)

I Flow Rule:

For a given force increment dP = dNq - d't, the increment of displacement

* between the centers of the two spheres is :

dt5 = dbi + d6yj + dak = d± + daS (4)U
I
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I The value of dJZ is given by:

dI dNk + fdN + dT -fdN "  dT (5)

dD= 12T-n + -n+

I
2 where: n- normal unit vector to the yield circle at the current force point.

t = tangential unit vector tangent to the yield circle at the current force

I point.

U dT =d'l•n (6)

dTt=d1 . t (7)

d1 = dTn n + dTt t = dn + d'lt (8)

Ho = 4Ga is the elastic modulus (9)

H = Ho (1- --- )1/3 is the elastoplastic modulus corresponding to the

yield surface of radius K.

Hp = _-- __ [ 1- (I _ __)1/3] is the tangential elastoplastic

modulus.

I
f = coefficient of friction of the material of the spheres.

I
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I a =(BNR)3, with B 32=

R = radius of the spheres.

Hardening Rule:

In 3-D force space, the axis of any yield surface translates without rotation in

such a way that it remains always parallel to the N axis:

d. = dT - fdNn + (K + fdN)d (10)

where d9 is the translation of the center of the "yield" surface on the 'r-plane, K is

the radius of the yield surface on the ?r-plane and d4 is the change of the direction

I in the unit vector n normal to the surface on the ir-plane of the current force point.

I
2.1.1 Verification of the Model

i The constitutive relation briefly described above, implemented in computer

program CONTACT (Seridi and Dobry 1984, Dobry et al. 1989), was subsequently

tested to verify that it reproduces accurately the analytical solutions obtained by

Mindlin and Deresiewicz (1953). In the numerical solution, the elastic properties of

quartz were used as input to the program (G = 32.9 GPa, v = 0.15 and f = 0.5,

I White 1965), where Gs is the shear modulus and vs the Poisson's ratio of the

material of the spheres. Because of the complexity of some of the loading cases,

only six of the most easily visualized cases will be presented herein. The

I
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I force-deformation curves from the analytical results of Mindlin and Deresiewicz

(1953) are reproduced separately in Fig. 10, while the corresponding rumerical

results obtained with program CONTACT are shown in Figs. 11 to 16.

I

2.2 Differential Stress-Strain Relationships for Regular Arrays of Spheres

I Once the solution of the contact problem is known, it can be used to develop

incremental stress-strain constitutive laws for regular arrays of spheres. These

incremental stress-strain relations can be integrated along specific stress paths in

order to determine the large strain response of a regular packing of spheres under a

number of loading conditions.

I Based on the contact solutions outlined in Section 2.1, it is possible to develop

these incremental stress-strain laws with the help of simple geometric

considerations if the array is statically determinate, or by using geometric and

compatibility relations if the array is statically indeterminate. Such differential

stress-strain relationships have been developed, among others, for the simple cubic

n array (sc) shown in Fig. 17a (Deresiewicz 1958), for the body centered cubic array

(bcc) of Fig. 17b (Petrakis and Dobry 1986) and for the face center cubic array (fcc)

of Fig. 17c (Duffy and Mindlin 1957). These three arrays have a number of contacts

per particle, or coordination number, CN of 6, 8, and 12 respectively. Other regular

arrays for which differential stress-strain laws are available include the hexagonal

I close-packed (Duffy 1959) and the cubical-tetrahedral and tetragonal sphenoidal

arrays (Makhlouf and Stewart 1967).

I
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I The general differential stress-strain relationship for regular arrays of spheres

under isotropic pressure is of the form:

daij = Sijkldekl, or dEij = Cijkldo-l (11)

where Sijkl is the stiffness and Cijkl the compliance matrix.

In what follows, the nonzero coefficients of Sijkl or Cijkl are provided from the

studies listed above, for the simple cubic, body centered and face centered cubic

I arrays.

1. Simple Cubic Array, (sc, CN = 6):

3 2 1/3s,,,1 = s222 = s.333 = 3) (1 - v )-2/3 (uoG 8) (12)

I

S1212 = S1313  =S2323  ( 3)1/3 2(1 - 1 / (o)G ) (13)I v.)

2. Body Centered Cubic Array (bcc, CN = 8):

I C1111 = C2222 = C3333  2 113 (1 V)/ +

2-vs (14)I (1-ig) /

I
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C1122 
( 

C1133 = C2233 = 1 [(2(l V)211
• (4 vt GS~or)'

2 - S (15)

I4 s)2/3 +1,

*' (1-1-s) +

I C 12 12 = C1313 = C2323 - 2 4G /

2- 3vs (16)
|(1 - S

I
3. Face Centered Cubic Array (fcc, CN=12):

3G 2 o 1/3 4-3 vs

S = S2222 = 3333 02(-v) (17)

I
-3G 2oa 1/3 VS (18)

S122 = S1133-" S2233 = 2 l s 2 2vs)

2I S1212 = S1313 -- S2323 "- [ 3Gso'° 1'/3 4-3vs (19)

2( 1 -v,) (2-v,,)

3 In Eqs. 12-19, G8 , vs are the shear modulus and Poisson's ratio of the material of

the spheres, respectively, and ao is the (macroscopic) isotropic pressure applied to

I
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i the regular array. It should be noted that for a given o, Eqs. 11-19 describe

linearly elastic, anisotropic continua. This is a result of the crystal anisotropy

inherent to any regular array structure. Uniform sand, however, is more or less

5 isotropic under isotropic pressure (Knox et al. 1982, Kopperman et al. 1982, Lade

and Nelson 1987), and since the objective herein is to model the behavior of granular

I soil, it is appropriate to define the conditions for which the stiffness matrices of the

arrays become isotropic. From inspection of Eqs. 12-19, it can be seen that the

necessary and sufficient condition for these three media to be isotropic under

isotropic pressure is that vs = 0 for the material of the spheres. (Duffy 1959,

Petrakis and Dobry 1986). The elastic constants of quartz are Gs = 32.9 GPa (4780

ksi) and vs = 0.15 (White 1965). Moreover, it has been shown (Duffy 1959) that

even when the degree of anisotropy is largest (v, = 0.5) the difference between the

Imoduli of the array in different directions is not more than 3.6% to 9%, depending

on the array considered.

Consequently, vs = 0 is a reasonable first approximation for quartz spheres
l1 1 1

forming regular cubic arrays. If vs = 0 is assumed, Gax = S12 12 = S S13 1 3 "1

S23 23  1111, independent of direction in the three arrays. For given values of Gs

I and uo, Gax is essentially proportional to the coordination number, CN, as

3 illustrated by Fig. 18; the same trend has also been reported by Yanagisawa (1983).

This is very interesting, as it shows that the stiffness of a regular array is directly

3 controlled by the number of load-transmitting interparticle contacts, and it

suggests that an increased number of contacts works in a way similar to the increase

U in stiffness of a system of springs in parallel when new springs are added. Of course,

as CN increases, the regular array also gets denser and its void ratio, e, decreases,

and therefore Fig. 18 can also be interpreted as showing that G.ax increases as e

I
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decreases. This inverse relation between Gmax and e is especially useful in actual

sands and random arrays, where e can be easily obtained while CN may be

I impossible to determine.

I Based on the expression for Gmax with vs= 0, it is possible to compute

velocities of shear and compressional waves propagating through the above three

regular packings, for wave lengths significantly larger than the radius of the spheres.

The shear wave velocity through an isotropically loaded regular array velocity is

I Vs = VGmaxlP, where p is the mass density of the medium. In the same way as

Gmax, Vs becomes larger as CN increases and e decreases. A plot of Vs in regular

cubic arrays of quartz spheres versus void ratio, e, for a given isotropic pressure, 0o,

is presented in Fig. 19a, while Fig. 19b shows the experimental curves for sands

reported by Hardin an Richart (1963). While the plots are qualitatively similar, the

I analytically computed wave velocities for the regular arrays are two to three times

higher than those in the actual soils.

It is hypothesized herein that the difference between Figs. 19a and 19b is

related to the dependence of shear stiffness on coordination number shown in Fig.

18. That is, the dependence of Gm, and Vs on the void ratio in real soils is

I explained by the increase in the number of intergranular contacts as void ratio

decreases. This hypothesis has also been made by other authors (Deresiewicz 1958,

Ko and Scott 1967). Furthermore, while the empirical relations in sand give Guax =

Af(e)o' 1/ 2 (or Vs o1/4), where f(e) is a function of the void ratio e and A is a

constant, the analytical expressions plotted in Fig. 19a give G.,ax = Bf(e) o1/ 3 (or

V. o 0' ). These higher values of moduli (and velocities) obtained analytically as

compared to measurements, and the difference between the 1/4 and 1/6 power in

the exponent of the confining pressure for Vs, are well known and have been

I
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observed in the past (Duffy and Mindlin 1957, Deresiewicz 1958). Figure 20

presents a comparison between analytically obtained and experimental values of rod

I wave velocity, Vr = AmEmaxIP, where Emax is the small strain Young's modulus,

versus confining pressure, o,, in rods constructed of equal steel spheres assembled in

the fcc packing. It should be noted that as the pressure increases, not only the
1/ 1/8

dependence of Vr on the pressure changes from o to ao but also the

experimental results approach the theory.

I Duffy and Mindlin and Deresiewicz have provided an explanation for the

results of Fig. 20, which is consistent with the argument advanced herein to

interpret Figs. 19a and 19b. As the particles used for the experiments of Fig. 20

were unequal in size and not perfectly spherical, they had a number of contacts

which transmitted little load (spheres barely touching or touching on asperities) or

I no load (spheres not touching). Consequently, the measured stiffness of the actual

medium was less than predicted and the dependence of the velocity on the pressure,

o, was not 1/6. When o increased, the barely touching contacts started

transmitting their full load and new contacts appeared. As a result, the

experimental values of Vr approached the theoretically predicted ones. This

* increase in stiffness and change of the dependence of the velocity on the exponent of

the pressure from 1/4 to 1/6 can be explained by this initial increase and subsequent

stabilization of the number of effective contacts with pressure, including the

influence of the roughness of the actual sphere surface. The above phenomena are

illustrated by the two sets of data in Fig. 20, corresponding to high and low

tolerance steel spheres. In the low tolerance spheres, having a greater variation of

spheres' sizes, the velocity is lower but it increases faster with oO at low pressures

I
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I than for the high tolerance spheres. Both low and high tolerance spheres approach

the theoretical line and the slope 1/6 at high pressures (Deresiewicz 1958).

Regular arrays -f sphe-es capture some aspects of the actual sand be a-Ovr,

and some analytically obtained results are in good qualitative agreement with

laboratory measurements on granular soils. As shown previously, they can also be

made to behave as a linear isotropic elastic solid once vs = 0 is assumed. However,

each one of the three regular arrays has a fixed value of void ratio, e (see Fig. 18)i
and thus cannot simulate a sand of arbitrary density. In what follows, an improved

random model of granular soil based on combining these three regular arrays is

proposed and some of the properties of this regular/random medium are compared

* to measurements in actual sand.

I
* 2.3 The Self Consistent Method

One of the most common procedures used to describe the behavior of

multiphase (composite) media is the Self Consistent Method (Hill 1965, Budiansky

1 1965).

This approach was first applied by Hershey (1954) and Kroner (1958) to model

the behavior of isotropic and anisotropic polycrystalline media. Hill (1965) and

Budiansky (1965) improved the method and applied it to the study of multiphase

media; they also developed the basic procedure adopted herein. The improved

I Hill-Budiansky method yields an estimate of the macroscopic elastic constants of a

multiphase medium which is an aggregate of isotropic, linearly elastic materials.

I
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I The medium is assumed to consist of continuous, irregular regions containing

the constituents, like those of a polycrystal. Furthermore, the shape of these regions

is assumed not to deviate much from ellipsoidal. The spatial distribution of the

microscopic components is such that this "composite" medium can be assumed to be

macroscopically isotropic and homogeneous. The medium has N constituents and a

I total volume V. The volume of the ith phase is Vi and the volume concentration of

the phase is ci = V1/V. It should be pointed out that in the limiting case of many

small concentrations, c1, C2, c3 , ...cN -1' the first N-1 phases will tend to appear as

individual inclusions in a matrix which in turn is the Nth phase.

In order to obtain the macroscopic elastic constants of the medium, K*, a

uniform macroscopically stress field o'u1j, is applied to the medium. Then, assuming

that the shape of the "inclusions" is elliptical, and using the solution for an elastic

isotropic inclusion inside an elastic, isotropic medium (Eshelby 1957), the elastic

field is computed for each of the phases. Finally, in order to determine the effective

moduli, G*, i/*, or K*, the total strain energy calculated in terms of the individual

phase properties, Gi, Ki, is equated to that of the macroscopic, yet unknown,

medium with constants G* and K*.

I For example, to compute the macroscopic shear modulus, G* = rO/, where

Iro = rijdV is the macroscopically applied uniform shear stress, see Hill (1965),

and "7 is the average value of the engineering shear strain, 7ij, over the total volume,

I V), the strain energy, E, is evaluated in terms of the macroscopic material

properties (Budiansky 1965):

E = _o 7ijdV (20)

I
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I In terms of the individual phase properties, Eq. 20 can be rewritten as follows

(Budiansky 1965):

1 T r t -.
EV J:11idV)N (21)

I which in terms of the N individual constituent properties yields

I N

E*V E= - 0 +) 7 -0 i j TdV (22)
N i=N

I and finally,

I N-i
= (UN 1 i=l1 -UN (r ) (23)

I Comparing Eqs. 20 and 23, we see that the macroscopic shear modulus is given by

I N-1I 1 UN + (24)

I The expression for the macroscopic bulk modulus, K*, can be obtained through a

similar calculation

N-i1

1 1 + ci (1 -Ki(!) (25)
iI N ao
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n G*, K* are the unknown shear and bulk moduli of the medium, Gi, Ki (i = 1, ..n)

are the corresponding moduli of phase i, ci = Vi/V is the volume concentration of

phase i, y, Evj the shear and volumetric strains of this ith constituent, and rO and

0
Sdie bie appiied sheaz az y drostatic ... tresses .the boundary of the medium.

Eshelby (1957) found that, in the case of an ellipsoidal inhomogeneity, the

elastic field withia the phase is uniform and the corresponding uniform strains are

given by:

ro (26)"i= G*+43*(G i-"G*)

0
I o_____

(Vi = K+a* (KiK) (27)

After substituting Eqs. 26 and 27 into 24 and 25, and then by "smearing out", that

i is substituting the properties of the matrix which surrounds every "inclusion"

(constituent) with those of the resultant, yet unknown, medium, Eqs. 24 and 25

simplify and become:

U N
C~ 1 (28)

c~ 1 =+ (9

I

I
C i (29
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I where a* and b* are constants depending on the shape of the inclusion (Eshelby

1957). For spherical inclusions:

* 1+V* (30)=3(1 -- ;")

I2(4-5u*) (1I* 15(1"v' (31)

I and the Poisson's Ratio of the medium, v*, is

| = K* - 2G* (32)

Finally, the elastic constants of the macroscopic medium, G*, K*, are

obtained by soling Eqs. 28-32 simultaneously. The solution obtained through this

method always lies between the Voigt and Reuss bounds (spatial averages of the

Stiffnesses and Compliancies, respectively) and, under certain conditions, between

the more strict Hashin and Shtrickmann (1963) bounds (Hill 1965, BuL,,nsky 1965).

U
2.4 A Model of a Random Array of Equal Spheres

Smith et al. (1929) observed that after shaking and tamping had been applied

to a random arrangement of equal spheres, the medium appeared to be composed of

I clusters of dense and loose regular arrays. These measurements also showed that

CN ranged between 6 and 12 contacts per sphere, which corresponds to the

theoretical range for regular arrays.

U
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3 Additional experimental work by Bernal and Mason (1960), Bernal et al.

(1964), Scott (1960), Davis and Deresiewicz (1974), Shahinpoor and Shahrpass

(1982), and Finney (1985), has confirmed that both 2-D and 3-D random

assemblages of equal spheres tend to crystallize. Consequently, it is generally

accepted that an assemblage of identical spheres can be modelled by a combination

of regular arrays, as idealized in Fig. 21a, where each polyhedron contains a regular

packing. The macroscopically observed porosity would then be obtained by the

I appropriate combination of the porosities of the packings weighed by their volume

fractions, ci (Finney 1983, Backman et al. 1983).

Therefore, the authors developed a model of a random array of equal spheres

consisting of randomly distributed clusters of N regilar packings such as the three

cubic arrays discussed previously. Furthermore, every regular cluster is assumed to

I be isotropic (that is, for cubic arrays, the Poisson's ratio of the spheres, v, = 0).

* Each of these clusters is considered to be an inclusion in the macroscopic medium,

such as shown by the observation of an actual random 2--dimensional array of

spheres in Fig. 21b, where regions of loose and dense packings can be clearly seen.

One could imagine the 2D medium of Fig. 21b to be a cross section of the 3D

U medium of Fig. 21a, which would be composed of an appropriate combination of the

three regular arrays: fcc (dense clusters) bcc (less dense clusters) and sc (loose

dusters). In this case, N = 3.

As a second step, a suitable combination of volume concentrations ci (i = 1,

.N), which yields the desired porosity of the random array, needs to be defined for

I N regular arrays. For this, the model proposed by Shahinpoor (1981) is used. In his

work, Shahinpoor derived an analytical expression for the spatial probability density

function, pdf, of the void ratio, p(e), in a three-dimensional random packing of

I
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I equal steel spheres, which he later confirmed experimentally in two dimensions by

means of an optical scanning technique (Shahinpoor and Shahrpass 1982).

Finally, once the volume fractions, ci, have been determined for the regular

3 arrays, the Self Consistent method is used to average the properties of the N regular

arrays within the (unknown) macroscopic medium, which is compressed at its

boundary by a hydrostatic pressure, au, and subsequently loaded by a small

increment of stress, daij. Of course, for these granular arrays the Self-Consistent

method must be modified to account for the effect of ao on the elastic properties of

both the medium and regular array dusters.

The first step in the application of the proposed method to random packings of

I spheres is to define the phases or constituents. Here, the sand will be assumed to

consist of the three regular arrays of spheres: sc, bcc, and fcc. The expression of the

m pdf, p(e), is (Shahinpoor 1981):

p(e) = Aexp(-Ae) (32)

exp(-Aem in) - exp(-Amax)I
where A is a constant defined by the following equation

S1+ eminexp(-Aemin) emaxexp(-Aemax) (33)e =-+ exp(-Aein) -exp(-Aeax)

and emin, emax are the minimum and maximum values of the void ratios of the

constituents (e0 in = 0.32, ema- = 0.91 for identical spheres) and e is the mean value

I of the distribution.

I
I
I



I

*I 31

I Since the mean value of the pdf of the porosity, p(n), n, coincides with the

macroscopic average (measured value) of the porosity of the granular medium,

whereas the mean void ratio does not, the pdf of the void ratio, p(e), is transformed

into p(n) by using the transformation p(n) = !de./dnip(e) (Benjamin and Cornell

1970). Then the appropriate p(n) is chosen so that - coincides with the

macroscopically measured value. The continuous function p(n) is subsequently

lumped at the three porosities of the regular arrays and thus the volume

I concentrations are determined. If now it is assumed that the above three regular

packings form clusters ("inclusions") within the macroscopic medium, which are

approximately ellipsoidal in shape (spherical, in this instance for simplicity) the Self

3 Consistent Method described by Eqs. 24-32 can be applied. This case of a granular

medium is rather complex since the properties of the constituents, Gi, Ki, as well as

N of the whole medium, G*, K*, are pressure dependent. Furthermore, the pressure

taken by each inclusion, o, which influences directly its elastic constants (see Eqs.

11-18), depends on the moduli of both the inclusion and the macroscopic, yet

unknown, medium. Once again, the pressure o inside inclusion i can be computed

from the Eshelby solution as follows:U
0, 0KVK 1 (35)Io -1 + a* (KV -

I Finally, the problem reduces to the simultaneous solution of Eqs. 28-32 and 35 in

which the values of Gi = Gi(a) and Ki = Ki(a ) are given by Eqs. 11-18 and the
volume concentrations, ci, from the lumped p(n) for i = 1, 2 and 3 corresponding to

the sc, bcc and fcc arrays respectively.

I
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2.5 Application of the Self-Consistent Method to Uniform Rounded Sand

NI The proposed model was evaluated by predicting the small strain shear

moduli, Gmax, of a rounded, uniform, quartz sand which had been subjected to

isotropic pressure in the resonant column device and was then heavily precycled

(Fig. 2). This was achieved by using as input the elastic properties of quartz for the

individual spheres (grains): Es = 75.8 GPa (from G, = 32.9 GPa and Vs = 0.15,

White 1965). However, in order to ensure that the individual arrays as well as the

macroscopic medium are isotropic under isotropic pressure, a value of v" = 0 was

assumed here for the Poisson's ratio of the spheres and used with E8 = 75.8 GPa.

The actual value of v, is very small already, and as mentioned previously, this

substitution does not affect the values of the moduli of the arrays in different

directions by more than about 2-3%.

The computed values of Gmax = G* appear in Fig. 22 (continuous lines)

plotted versus the isotropic confining pressure acting on the medium, 0o, for e =

n/(l-n), equal to 0.46, 0.54 and 0.58. The corresponding values of bulk modulus,

K* = ao/ev, were also computed, and Fig. 23 contains a plot of the confining

pressure, ao, versus the resulting average volumetric strain, Ev, predicted by the

model for e = 0.54. The volumetric strain was derived from this bulk modulus, K*,
o

for different ao.: "EV = o/K*.

Figure 22 also contains experimental data from precycled Ottawa C-109 sand

where millions of cycles were applied to isotropically consolidated hollow cylindrical

specimens. This is the same research previously discussed in connection with Fig. 2

(Drnevich 1967). The data in Fig. 22 are for the same void ratios used in the

analytical simulations, with a number of cycles, N, between 1 X 106 and 22 X 106,
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I and an applied cyclic torsional shear strain, 7h, between 3 X 10- 4 and 6 X 10- 4 .

This precycling increased the sand stiffness more than three times, while at the

same time the void ratio stayed about constant and equal to the initial, virgin

specimen (dotted line in the figure). Furthermore, the precycing modified the
1/2 t /

dependence of Gmax on pressure, ao( *) , from about 0o to00 (Fig. 22c), and

3 Imade the experimental results approach closely the theoretical values after a very

large number of cycles. Those trends provide strong confirmation to the hypothesis

that sand behaves as predicted by the theory, once the theoretical number of load

transmitting contacts is reached, in this case as a result of many cycles of shear

precycling.

In Fig. 23, an additional hydrostatic compression was applied to a specimen

after precycling it 1 X 106 times at a cyclic shear strain of 6 X 10-4 (square data

I points). Here, the stiffness of the medium approached the theoretical values faster

than did the shear stiffness in Fig. 22, for the same number of cycles. This

happened probably because, in addition to the precycling there was a subsequent

increase in the confining pressure, which completed the formation of contacts

started by the repeated shearing.

I Additional experimental data from resonant column tests on 30-40 Ottawa

C-109 sand, this time on solid specimens, covering a wide range of densities from

dense to medium loose, ar3 presented in Fig. 24 (Song and Stokoe, 1987). The

strain amplitude in these experiments was 7yx = 6 X 10"4 . It can be clearly seen

I
a(*) o, and og are both used interchangeably herein in the text and figures to

denote the macroscopic, isotropic pressure applied to the medium.

I
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that while again the value of the shear modulus, Gmax, increases dramatically with

number of cycles (Fig. 24a), the void ratio remains essentially constant (Fig. 24b).

IIt becomes almost certain, then, that this increase in the stiffness is not caused by

any great change in the particulate structure of the medium, which would have

manifested itself through a change in the macroscopic void ratio, but by the much

subtler change associated with an increase of the number of contacts at constant

void ratio, as one could deduce from Figs. 20 and 24. With the continuous cycling

Iat small strains, probably not only new contacts were created between the sand

grains, but old "dead" ones became load-transmitting ("live"), resulting in the

excellent agreement between theory and experiment in Fig. 22 after many cycles.

3Finally, Fig. 25 presents the variation of shear modulus at small strains, Ga.,

with number of contacts per sphere CN and with ao calculated from: i) the three

i regular cubic arrays, that is from Fig. 18; ii) the Self Consistent Method; and iii)

the analytical solution of Walton (1987). Walton, by considering the pressure

dependent normal and tangential compliances at the interparticle contacts derived

the following expressions for the two elastic moduli (Lame constants), A and p =

Giax, of a random packing of equal elastic spheres with an infinite coefficient of

Ifriction under an isotropic pressure o:

2 .2
A 1 0(2B+C) 7 13

I

I
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where p=(1-n), and n is the average porosity of the medium, B and C are constants

which depend on the material properties of the spheres, Gs and Vs, and CN is the

I average coordination number.

The final result is the very consistent plot of Fig. 25, with the Self Consistent

Method providing a prediction in excellent agreement with the analytical results by

Walton (in Eqs. 35 and 36, v, was set to zero and the coordination number was

given by this Self Consistent scheme). Thus, the earlier hypothesis, extrapolated

from the regular arrays, that the small strain shear modulus, G.a, of a random

array of equal spheres is essentially a linear function of the average number of

contacts per particle is confirmed and justified by two different analytical

* approaches.

I
2.6 A Two-Dimensional Numerical Model of Granular Soil at Small Strains

In the previous section, a dosed form solution was obtained for the elastic

constants of a random aggregate of equal, rough, elastic spheres having an arbitrary

macroscopic void ratio and subjected to isotropic loading. This was done through

the use of the Self-Consistent Model and on the assumption that the array is

composed of different phases, and the results contributed to an improved

understanding of the small strain behavior of sands under isotropic conditions. The

fact that this analytical solution was obtained with relatively small effort should be

attributed to the high level of symmetry of such a system under isotropic pressure.

Since the Self Consistent Method was developed to determine the elastic

I constants of a multiphase medium, it is not suitable for the determination of

I
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elastoplastic properties. Although there have been modifications proposed to adapt

the Self Consistent Method to nonlinear behavior, these adaptations would not work

in the case of a granular medium, since particle sliding changes the material

configuration and thus it also changes the distribution of the various volume

fractions. Moreover, the symmetry of the constituents would change dramatically

with loading and the problem would become intractable. To overcome this, it was

decided to attempt a numerical model, which although contaiii ing assumptions

I similar to those of the Self Consistent Method, could perform numerically the

integration of the equations to larger strain levels. This model is similar to those

proposed by a number of researchers (Budiansky and Wu 1962, Lin and Ito 1965,

1966) as discussed in Section 1.1, in that it is composed of regular packings of

spheres randomly oriented so as to ensure a statistically isotropic medium. The

I properties of the packing to be used as basic "element" of this medium is defined by

the contact law described in Section 2.1. In other words, the constitutive law of this

regular packing is similar to those described by Eqs. 12-18, but now the

compliances are given by program CONTACT described in Section 2.1.

I
2.6.1 Nonlinear Finite Element Simulations

In order to model the behavior of granular soil at small strains, a two-

dimensional numerical model was developed which calculates the response of a

I random aggregate of equal, elastic, rough spheres under an arbitrary boundary stress

state, aij. For this, a finite element analysis was performed in which the element

corresponded to a simple cubic array of equal, rough elastic quartz spheres. Each

I
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2D element contains an undetermined number of spheres, and is assumed to be

subjected to a uniform stress field so that four spheres can be used to represent the

I above element (Duffy and Mindlin 1957). Figure 26 sketches this individual

element. The stress-strain behavior of this array under a biaxial state of stress, a n

and o-22, followed by pure shear, appears in Fig. 27c. Figures 27a and 27b portray

the force-deformation behavior of the "weak" and "strong" contacts for the same

case, respectively. Therefore, the behavior of this packing under biaxial loading is

I the result of the interaction of the two sets of contacts. In this element, the

force-deformation relation at each of the contacts between spheres is given by the

numerical solution discussed in Section 2.1, through program CONTACT, and the

constitutive law is obtained by combining the numerical solutions through

geometric considerations. The element cannot sustain a tensile stress normal to the

I slip planes, since this would imply that the corresponding contacts would cease to

exist, and as a result the particles would attempt to rearrange and form a new

packing. Although this rearrangement obviously happens in actual sand aggregates,

its simulation is too complex and computationally demanding to implement in the

present finite element code, and the decision was made to make the contact normal

forces positive-definite, that is they can be either positive or zero, but never

negative.

A subroutine implementing the behavior of this element was coded into the

nonlinear finite element program ABAQUS (1982) as a user defined material

subroutine (UMAT). Finally, an incrementally linear analysis was done using eight

noded elements with reduced integration.

Several media were used in these simulations consisting of a number of simple

I cubic arrays in two dimensions (a monolayer of equal spheres assembled in simple

I
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I cubic patterns), oriented in a such a way as to resemble a statistically isotropic

random aggregate. As discussed above, each of the elements is a simple cubic array,

randomly oriented, and the number of elements used in each of these media varies

from 16 (4 x 4) to 64 (8 x 8) as illustrated in Fig. 28. Therefore, the medium has

the same properties of the simple cubic array in terms of void ratio and coordination

I number. Although other packings could in principle have been used, it would have

been more difficult (Petrakis and Dobry 1987). It was felt that the inability of

varying the void ratio or the coordination number (number of contacts per particle)

did not unduly constrain the planned FE simulations, which were expected to

provide useful insight into the behavior of a sand at small strains.I

I 2.6.2 Monotonic Finite Element Loading Simulations

I As a first step, the isotropy of the media used was verified by loading them

0
isotropically up to a = 100 KPa, followed by pure shear which was applied

incrementally. This was accomplished by imposing on each medium a

I predetermined direction of the major principal stress. The values used for the angle,

a, between the major principal stress and the vertical direction of the medium (Fig.

29a) were 00 (compression in the vertical direction); 22.50; 450 (pure shear in the

vertical and horizontal planes); 67.50; and 900 (extension in the vertical direction).

The results of these simulations are shown in Fig. 30 as plots of the applied deviator
|0 0

stress, a -o0, versus the resultant shear strain, ' = El -f2. Figure 30 includes

results of all four media composed of 16 and 64 elements of Fig. 28.

I
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It can be seen in Fig. 30 that the medium is indeed isotropic under isotropic

pressure, as expected. Since Fig. 30 shows that the difference between the

U stress-strain behavior of the 16-element and 64--element media is not significant, it

was decided that for subsequent parametric studies, as well as for monitoring the

stress-strain behavior of each element, any of the less costly 16-element media

could be used as representative of the aggregate. In another simulation using

Medium 2 with 16 elements, a monotonically increasing hydrostatic pressure was

applied up to o, = 500 KPa, and it was observed that both the macroscopic and the0

microscopic (element) response exhibits a locking nonlinear elastic behavior, similar

to that observed in sand (Fig. 31, see also Fig. 23).

3 Therefore, the media being used in the numerical experiments simulate well

important aspects of the behavior of actual, uniform, rounded sand, by being

I isotropic under isotropic pressure, yielding in shear and locking under hydrostatic

compression. That is, these "random" media have the desirable properties of the

I regular simple cubic array without its problematic aspects.

In the numerical simulations of pure shear summarized in Fig. 30, it was

observed that the yielding/failure process of the medium occurs in two successive

stages. In the first stage, a growing number of "soft" elements, oriented more or

less parallel to the directions of the applied shear stress, slide and this sliding

accounts for the increasing nonlinearity of the curves in Fig. 30, as the shear strain,

I7 = C -E2, increases from 0 to values around 0.1 X 10-3. At these larger values of

shear strain, typically around 20% of the elements have already slid (failed). In the

second stage, occurring at about 7 = e -C2 = 0.16 x 10-3, one or several of the

"stiff' elements, oriented more or less perpendicular to the direction of the shear

I stress, and which had not yet slid, tend to separate as the normal force at the

I
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contact becomes zero, the corresponding ratio shear/normal force at the contact

reaches f, and the element slides. This, of course, is related to the fact that the

i normal contact force is allowed to be zero but not negative. Once some of the

3 "stiff' elements fail iue to this tendency to separate, a growing number of both

"soft" and "stiff" elements slide in the next increment(s) by a combination of shear

stress increase and separation tendency, thus precipitating the failure of the

medium, occurring at rf = 44.8 KPa. This value of rf is close to, but slightly less

I than the yield stress of the simple cubic array subjected to pure shear on the sliding

I planes of the array: r = (0.5)(100) = 50.0 KPa. This "failure" of the aggregate,

defined here by the sequence of phenomena just described, which at the end result in

the global stiffness matrix of the medium becoming singular, is associated with a

generalized tendency of the particles to slide, separate and rearrange themselves into

I more stable positions. This corresponds roughly to the changes in geometry

occurring in actual sands at the threshold strain, yt = 0.1 to 0.2 x 10-1 (Dobry et al.

1982), as verified by the fact that "failure" of the medium in Fig. 6 occurs at a shear

strain, 7 = -2 = 0.16 x 10-1 .

I
2.6.3 Cyclic Finite Element Loading Simulations

i The (16-element) Medium 1 was also subjected to an isotropic stress of

a0 =300 KPa followed by a complete isotropic cycle with an amplitude 200 KPa,

that is ao was first increased to 500 KPa and then decreased to 100 KPa, and thena

back to 500 KPa. The stress-strain behavior calculated for the medium is

I
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pressented in Fig. 32, and it shows a nonlinear lastic behavior similar to that of

actual sands (Ko and Scott 1967).I 0
The same 16--element medium, consolidated isotropically to a = 100 KPa,

was also cycled under pure shear conditions, with an amplitude of shear stress, rc =

20, 30, 35, 40 and 43 KPa. The hysteresis loops for r. = 40 and rc = 43 KPa

appear in Figs. 33a and 33b, respectively.

I
2.6.4. Computation of Dynamic Properties and Wave Propagation Velocities.

The secant shear moduli, G, obtained from the pure shear simulations at

different angles a for the constant mean stress case (Fig. 30), were normalized with

I respect to the shear moduli at very small strains, GM=, obtained in the same

simulations, and the corresponding values of G/G.a. versus shear strain are plotted

in Fig. 34a, where they are compared with the bounds proposed by Seed and Idriss

(1970) from actual tests on sands. The corresponding damping ratio, , obtained

from the loops under cyclic pure shear (Fig. 33) is plotted against cyclic shear strain

I in Fig. 34b. Figure 34 corresponds to simulations done at a mean stress of 100 KPa.

Figure 34 also includes the corresponding curves for G/G.a. and damping ratio for

the case of pure shear along the sliding planes of a simple cubic array, computed by

Dobry et al. (1982). The slopes of both the G/Ga. and damping ratio versus 7

curves in Fig. 34 for the aggregate are flatter than that of the simple cubic array.

3 This "stiffer" behavior of the aggregate, as compared to that of a single cubic array,

should be attributed to the interaction between the elements of the medium.

I
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Finally, the small strain constrained moduli, Dij, were computed in both

principal (vertical and horizontal) directions, as follows: The medium was loaded toI 0 0
the desired biaxial stress ratio, K = a /a, and then very small stress increments

1 2S0 0

with the appropriate sign were applied, A 0, zn ,the corresponding differences inI1 23
strain were computed and, finally, the small strain constrained moduli of the

medium, D, D22 were calculated in both directions. The results of this simulation

are shown in Figs. 35a and 35b as plots of the normalized constrained moduli of the

I medium, D(K)/D(I) and D(K)/D(1) versus the stress ratio K = a°/a ° , where D(  is
22 22 11 11 1 2 ii

the constrained modulus at a given K, and D() the corresponding constrained
0 H

modulus under the initial isotropic stress, "0. The same figure includes also data

points from a number of measurements on sand in the large cubic facility at the

University of Texas at Austin (Kopperman et al. 1982), which were performed

Iduring a test similar to that defined for these numerical simulations. The

agreement between normalized experimental results and numerical simulations in

Fig. 35a and 35b is excellent. Consequently, the main conclusion obtained from the

University of Texas laboratory results, that the P-wave velocity propagating along

a principal stress direction is 2dy a function of the value of that principal stress is

fully predicted by the numerical experiments. Therefore, as previously hypothesized

by the authors, this is an effect due to the particulate nature of the soil, which can

be explained and reproduced analytically once this particulate nature is taken into

m account.

I
I
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2.7. Two-Dimensional Nonlinear Distinct Element Simulations

U After the discussion on the limitations of the nonlinear finite element model

I described above, it was decided to use a different type of numerical simulation,

capable of modelling granular soil subjected to large strain anisotropic loading, in

which contact separation, sliding and rearrangement of the particles are allowed.

There are several approaches to model the behavior under load of random

I arrays of equal and unequal spheres. One of the most widely used procedures is the

"Distinct Element Method" (Cundall and Strack 1979), who have used an explicit

finite difference scheme to determine the static response of an array to applied

strains (program TRUBAL) or to applied boundary displacements (program

BALL).

I Program TRUBAL (Strack and Cundall 1984) was modified at RPI by Ng and

Dobry (1989) within another, NSF sponsored project, by replacing the existing

arbitrary linearly elastic-perfectly plastic, non pressure dependent, force

displacement relation at the intergranular contacts, by the more realistic and

rigorous Hertz-Mindlin contact law. This was accomplished once more by

I attaching program CONTACT, described in Section 2.1, as a subroutine in

TRUBAL (Table 2). The new two-dimensional program was named CONBAL-2 ;

it is very similar to three-dimensional program TRUBAL, but it has one less

dimension, due to the increased computation and storage requirements imposed on

the program by the nonlinear subroutine CONTACT. Moreover, program

ICONBAL-2 has been vectorized to run more efficiently on a supercomputer with

vector facilities. Another difference is the absence of particle rotation in

I
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I CONBAL-2, as this causes as yet unsolved problems in the numerical simulations.

This absence of rotation as well as the 2-D nature of the simulation make the

random arrays of spheres somewhat stiffer than actual 3-D arrays and soils; Ng and

Dobry (1989) have accounted for this by reducing the interparticle angle of friction

from 0.5 to 0.35. Therefore, CONBAL-2 is very similar to TRUBAL, except for

the differences noted above.

The results of extensive parametric studies performed to check the accuracy of

this new program appear in Ng (1989). These parametric studies established the

appropriate range of the necessary input variables (time step, strain rate and

damping) and confirmed the excellent agreement between the results of CONBAL-2

and existing analytical results. At this point, a copy of CONBAL-2 became

available to the AFOSR project for research on the stress-strain behavior of

I granular soil.

As a first step, it was decided to start simulating phenomena in the small

strain range, and at a later stage to focus on the large strain, fully nonlinear

inelastic behavior. Furthermore, it was also decided to compare the results of

CONBAL-2 with answers obtained using the analytical and numerical procedures

I presented in Section 2, as well as with experimental data in the literature.

Since the interparticle force-deformation relationships developed by Cattaneo

(1938), Mindlin (1949) and Mindlin and Deresiewicz (1953) apply only to spheres of

the same sizes and same properties, only random arrays of equal and moderately

unequal spheres were developed and studied. Program CONTACT, and thus

I CONBAL-2 can, in principle handle only random arrays of equal spheres; however,

the same program, with certain assumptions, can handle in first approximation

moderately unequal spheres of the same material.

I
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2.7.1 Small Strain Moduli of Isotropically Compressed Random Arrays of

Equal Spheres.

Two different 2-D random arrays of 477 identical particles having the

properties of quartz were generated using CONBAL-2. The first array was very

loose with an average coordination number, CN, of 2.1, while the second was

medium dense with CN=3.0. These arrays were then subjected to three different

I values of isotropic pressure (o,0=91, 334 and 698 KPa) without significant change in

Itheir average number of contacts.

The configuration of the array with CN=3.0 subjected to o = o = ao = 91

KPa, is shown in Fig. 36, where the circles represent the spheres and the rectangles

the relative magnitudes and directions of the contact forces. There are four

I different rectangle widths, with each one of them corresponding to a range of forces

between four equal fractions of the maximum computed contact force. For example,

if the maximum contact force is F KN, the narrowest rectangle stands for the range

of forces between 0 and F/4 KN, the next wider rectangle for the range of forces

between F/4 and F/2 KN, etc. This notation will be used throughout this report

I whenever results from the distinct element method are presented.

Figure 37 portrays some of the micromechanical statistics which are calculated

as a result of the isotropic compression simulation. Figure 37 includes the frequency

distributions of contact angles, mobilized angle (angle between contact force and

contact normal), coordination number and contact force. As can be seen in the

I above distributions, the array is not perfectly isotropic. This is a result of the small

number of spheres used in the periodic cell, coupled with the crystalization which

occurred due to the identical sizes of all 477 spheres. The combined effect of these

I
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I two features has increased the "characteristic size" of the smallest constituent to

that of a crystalized region; as a result the array is not statistically isotropic.

I Another important observation is the transmission of the applied forces through

columns of particles, in which all "columns" experience the same contact force; this

has caused the contacts to form along preferential directions rather than uniformly

* in all directions.

These deviations from isotropic behavior are not that significant, however, and

i the 477-particle arrays can be considered to be isotropic, aL least in first

* approximation.

These two arrays of 477 equal particles were subsequently used to compute the

small strain shear modulus Gnax under three levels of isotropic pressure: uo = 91,

334 and 698 KPa. The shear modulus was computed by applying an increment of

I macroscopic shear strain, Ay = 1 X 10-6, and computing Guax as Gmax = Ar / Ay.

The results of this simulation appear in Fig. 38 (diamonds), as a plot of Gma. versus

the Coordination Number. In this figure they are also compared with the values

obtained from the regular arrays of spheres, the Self Consistent method and the

analytical expressions of Walton (1987), already discussed in Section 2.5 and plotted

in Fig. 25. In order to compare the 2-D results obtained by the Distinct Element

Method with those obtained by other 3-D approaches, it was decided to adjust the

coordination number to account for the third dimension. The only regular packing

of identical spheres where a clear relation can be established between the

coordination number and Gmax in two and three dimensions is the simple cubic

array, which has the same shear moduli in 2 and 3-D. In this regular array, CN=4

for 2-D and CN=6 for 3-D. Therefore the values of the coordination number in the

Distinct Element Simulations of Fig. 38 were multiplied by 6/4=1.5. The final

I
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result is the very consistent plot of Fig. 38 using points from four different methods.

The plot essentially confirms the hypothesis presented by Yanagisawa (1983) and

I Petrakis and Dobry (1986) that the small strain shear modulus, Gmax, of a random

array of eQual spheres is in first approximation a linear function of the average

number of contacts per particle.

I 2.7.2 Small Strain Moduli of Anisotropically Compressed Random Arrays

The same 2-D array already discussed with 477 equal elastic, rough spheres

and coordination number, CN=3, consolidated under ao = 91KPa (Fig. 36), was

further loaded in program CONBAL-2 under biaxial compression to 0 22 = 233

I KPa, while keeping or11 constant. This was done to: i) investigate the influence of

the magnitude and direction of the principal stress on the constrained moduli, D,

and also on the velocities of P-waves propagating through the medium, ii) interpret

the experimental findings of Kopperman et al. (1982), and iii) verify the results of

the nonLnear finite element model presented in Section 2.6.

I The constrained moduli, Dii = p V2 were calculated in the same way as in the

nonlinear finite element model of Section 2.6, as follows: once the desired stress

ratio, K = 0'/72 = a 22/O"1 1, was reached at specific points during loading, very small

increments, dell, df 22 , equal to 1.062 X 10- 6 were applied to the array with the

appropriate signs. The corresponding stress increments, da,, do 22, were computed,

Sand finally, the small strain constrained moduli, D( K ) = daii/dfii, were calculated

both in the direction of the major (o- = a22) and minor (02 = o11) principal stresses.

I
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The same simulation was performed on a second random array of 531

moderately unequal quartz spheres, having a ratio of radii, RI/R 2 = 1.5. In this

I array 168 spheres had a radius R, and 363 had a radius of R2 . The relation of sizes

was set to 1.5 so that the Mindlin-Deresiewicz theory at the contact could be

approximately applied by using the concept of "equivalent radius". This equivalent

radius, Re = R1R 2/ (R1 + R2 ), where R, and R2 are the radii of the particles in

contact, has been used in the past in the case of unequal cylinders (Poritsky 1950).

I It is derived from the Hertz (1882) theory for smooth spheres (f=0) and can be

applied to the case of roug'i spheres as a first approximation (Ng 1989).

The above array was first subjected to isotropic pressure, ao = 132 KPa; the

corresponding geometrical and statistical information is given in Figs. 39 and 40.

As the spheres now are not identical there is no crystalization and the 531 sphere

I aggregate is almost isotropic. Therefore, this 531 spheres arrays exhibits a higher

level of symmetry than the 477 equal spheres arrays and can be assumed to be

isotropic.

The array was then loaded under biaxial compression to 022 = 332 KPa while

keeping all constant. The array configuration and the distribution of the contact

I forces at the end of loading are shown in Fig. 41; the corresponding micromechanical

information is shown in Fig. 42. This simulation was run for the same reasons as

with the 477--sphere array, and also in order to generalize the earlier findings for the

case of unequal spheres.

The constrained moduli were again calculated at different values of K =

a1/a22 . The normalized constrained moduli, D(K)/ D(A) from this simulation, as

well as of the simulations on the 477 equal sphere array, appear in Fig. 43, where

they are plotted against the stress ratio, K = 0 2 2/0U. Figure 43a contains the

I
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values of DtK)D K ) spheres in the direction of the increasing principal stress (0 22),

while Fig. 43b contains the normalized moduli in the other direction, in which the

stress (all) is kept constant. Both figures also include data points from a number of

experiments on sand (squares) performed at the University of Texas by Kopperman

et al (1982), as well as the results of the nonlinear finite element simulations of

* Section 2.6.

The agreement between all normalized results in Fig. 43 is quite good and a

straight line of equation D K)/D ' ) = (0,2/al)0 ' 38 = K '38 could be fitted to all

numerical and experimental data points included in Fig. 43a. It should be noted

that, if the change in sand density as K increases is neglected, D K)/D' 1 )

[VK)/V,1)]2. Using the results of the experiments of Kopperman et al (1982) in

sand one computes DK)/D 1) -- K °' , which is very similar to the line in Fig. 43.

I Therefore, the results of the experiments performed at the University of Texas, that

the P-wave velocity (Vp = M/D/p) propagating along a principal stress direction is

in first order approximation only a function of that principal stress, is fully

predicted by all numerical techniques developed as part of this research.

To further demonstrate the fact that the P-wave propagation velocity (or the

I constrained modulus) is only a function of the principal stress in the direction of

wave propagation, and not of the mean stress 0o, the 477 equal sphere array was

subjected to a biaxial compression-extension loading simulation under constant

mean stress, co = 91 KPa. The vertical stress r22, was increased from 91 to

137.4 KPa, while the horizontal stress, g1o, was decreased from 91 to 44.7 KPa.

I Thus ao = 0.5 (137.4 + 44.7) = 91 KPa at the end, equal to the initial value of o.

Again the normalized constrained moduli, DtK)/D I) were computed at specific

values of the stress ratio, K = 'ii / Oo in both directions all and (22, and are

I
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3 plotted versus the stress ratio, K in Fig. 44. If the moduli were a function of the

mean stress, the P-wave velocity (and modulus in that direction) would be

I unaffected by the changes in the magnitude of the principal stresses and the results

would plot as a horizontal straight line DtK)/D !) = 1.0. This is not the case,

however, and the moduli either decrease or increase together with the change in the

magnitude of stress in that particular direction. Therefore, Fig. 44 confirms that

the constrained moduli, Dii, are affected by the principal stress in the direction of

I loading only and are not by the mean stress.

Based on the results of the distinct element micromechanical numerical

similations presented herein, it is concluded that changes in the structure of the

random packings and granular soils are responsible for the observed macroscopic

behavior, and specifically for the dependence of the P-wave velocity only on the

principal stress in the direction of wave propagation. Under isotropic compression

(Figs. 36, 37, 39, and 40), the orientations of the contacts have a more or less

uniform distribution, the material behaves isotropically and the wave propagation

3 velocity is a function of the isotropic stress, ao. Under biaxial (2-D, see Figs. 41

and 42) or triaxial (3-D) compression, a significant number of contacts is gained in

the direction of the increased major principal stress, a, while contacts are lost in all

non-principal directions. These contacts along principal directions form "branches"

or "stiff chains" parallel to the principal stresses which transmit most of the applied

I principal stresses from periodic "boundary" to periodic "boundary", see also Cundall

and Strack (1983). The result is a structure reminiscent of a simple cubic array

I loaded by stresses a,, 02 and 0 3 parallel to the main axes of the array, and with the

effect of each principal stress being more or less uncoupled from the other two. This

I uncoupling, which in the simple cubic array happens naturally due to the geometry

I
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3 of the array, develops in the random arrays as a consequence of these stiff columns

or "branches" of particles which carry the applied load. Therefore, as in the case of

I the simple cubic array of Section 2, the longitudinal modulus, D, in any principal

direction is a function only of the stress in this direction and is unaffected by

variations in the stresses in the other directions. Although the CONBAL-2

simulations discussed herein are two dimensional, the authors postulate that the

same phenomenon occurs in three-dimensions with the formation of "stiff chains" in

I three directions instead of two. It has been shown (Deresiewicz 1958, 1958a,

Petrakis and Dobry 1986), that the shear moduli of the simple cubic array depend

only on two principal stresses and are independent of the third principal stress.

Since the moduli of the random arrays are expected to be of similar nature due to

the 3-D "stiff columns" just discussed, it is believed that this is the reason why the

I shear moduli (or S-wave velocities) have been observed experimentally to depend

only on the principal stresses in the direction of wave propagation and particle

motion. However, this hypothesis could not be verified with the 2-D simulation

3 shown and further work needs to be done once the 3-D version of CONBAL is

developed.

b. Despite the limitations of CONBAL-2 discussed above (2-D instead of 3-D,

no particle rotation), the results presented in the previous section and by Ng (1989)

show that the program is a powerful tool for simulating the monotonic and cyclic

behavior of sand. Therefore, it will also be used to investigate the validity of the

assumptions regarding the possible distortion of the shape of the soil yield surface

3 presented in Section 1.1.

The next two sections present a combined effort including laboratory and

numerical experiments aimed at defining the necessary parameters of a constitutive

I
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law for granular media, while Section 5 discusses the main features such law must

have in order to reflect the observed macroscopic behavior. These parameters

include the initial and subsequent shape of the yield surface(s), the hardening and

flow rules, etc. Both the laboratory and numerical experiments supplement each

other as they correspond to similar materials and stress paths. The numerical

simulations provide micromechanical information not available from the

experiments, providing additional insight and helping in the interpretation of the

* macroscopic data.

I
I
I
I
I
I
I
I
I
I
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I 3. EXPERIMENTAL STUDY

I
The main objective of this experimental work is to determine the hardening

characteristics of the yield surface(s) of a granular medium after experiencing

various load histories. For this, a number of experiments were performed along

I specific stress paths on hollow cylindrical specimens composed of glass beads. These

3 stress paths are similar to those used by Phillips et al. (1972) in the experimental

study of the yield behavior of aluminum discussed in Section 1.2. Since the concept

of yield surface or yield function is central to plasticity theory, the shapes of the

initial yield surfaces were defined and measured on distinct but identical specimens.

I As a second step, the motion and the shapes of these yield surfaces after loading

* were also obtained by a series of cyclic experiments run on the same specimen.

As discussed in Section 1.3, even at constant pressure soils have different yield

characteristics than metals, with the most important difference being the absence of

a dearly defined elastic region. While it is possible to define an initial yield surface

I through the threshold strain (for example the locus of all points at which

irreversible volumetric or pore water pressure changes start to occur), this is

difficult to implement in the laboratory. An alternative is to define the yield

surface as the locus of all points having a certain value (dose to the threshold but

above it) of the octahedral shear strain; this approach was recently adopted by

I Peters (1988) and will also be used in this study.

The experiments were performed on long thin hollow cylindrical specimens

made out of glass beads. Each specimen was first consolidated isotropically by

3 having the same internal and external pressure, c'c(= o), and then was subjected to

h ya cvbination of axial and torsional loads, always in drained condition,I
I
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I using a computer-controlled axial/torsional servohydraulic device. In any given

test, the mean stress was kept constant and equal to the consolidation pressure

during the shear stage. Therefore, all experimental data from the test are on one

r-plane in stress space.

I
3.1 Laboratory Equipment

The tests were performed in RPI's Class of 1933 Earthquake Engineering and

Cyclic Loading Laboratory. This laboratory houses the MTS axial/torsional closed

I loop servohydraulic device which is connected to a digital computer. The computer

is a MACSYM-2 computer made by Analog Devices. It is built around the 8086

Intel chip and uses a 16-bit bus and the Intel 8087 co-processor for computing. At

3 the front end it has a 8088 chip for fast data acquisition and control from ten

available channels. Figure 45 sketches the configuration of this computer driven

3 axial/torsional apparatus.

The axial/torsional MTS system can perform cyclic tests in both axial and

torsional modes, alone or combined. Each mode can be applied either monotonically

I or cyclically, in stress or strain control.

The applied load is monitored by a load cell which can detect changes in the

3 axial force of * 0.445X10 "1 KN. The axial deformation of the specimen is measured

by an LVDT located at the top of the loading piston. The resolution of the LVDT

I is * 0.635 X 10 -4 m Full Scale Output (FSO).

I
I
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The applied torque is measured by a torsional load cell which is able to

distinguish changes in the torque in the order of * 0.565 X 10 KN-m. The

rotation is measured by an RVDT which is also located at the top of the loading

piston. The resolution of the RVDT is * 0.05 degrees FSO.

The volumetric changes are measured by an WF17038 automatic volume

change apparatus. This device measures the changes in the position of a brass piston

incorporating a Bellofram rolling diagram. Volumetric changes on the order of

0.05 cc can be measured.

The cell pressure is measured by a pressure transducer which is connected to

the cell the bottom of the triaxiai : J. The resolution of the pressure transducer is

I 1.03 KPa FSO.

The signals from the previously described devices are transmitted using six

I different channels to the MACSYM-2 computer through a Analog/Digital

converter; its resolution for the particular gain used in these tests, was k 4.88 mV.

The computer performs all appropriate calculations and sends signals to keep the

mean stress constant by changing the cell pressure. This is achieved by

transmitting the signals through the Digital/Analog converter to Electropneumatic

I Regulator NIT200. This regulator is capable of implementing cell pressure changes

of * 0.14 KPa within a pressure range from 0 to 120 KPa.

I
I
I
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1 3.2 Specimen Properties

Glass beads were used in the hollow cylindrical specimens. Glass beads were

used instead of natural sand to investigate the yield surfaces of granular media, in

order to minimize the variability in geometric properties which may influence the

I results, and in order to compare with the numerical simulations using program

CONBAL-2. The glass beads are manufactured by Potters Industries Inc, New

Jersey, and are made from soda-lime glass.

The specific gravity of the glass spheres is 2.45 to 2.50 and their minimum

roundness is 70%. The Young's modulus is Es=68.97 X 106 KPa, the Shear

I Modulus Gs= 29.66 X106 KPa, and the Poisson's ratio, vs, is 0.21. The static

coefficient of friction is 0.9 to 1.0 and the dynamic coefficient is 0.7 to 0.8. The

coefficient of friction as measured by Chen (1986) is 0.15. Table 3 summarizes the

properties of the material used.

The hollow cylindrical specimens had an outside diameter, Do, of 7.11 cm and

an inside diameter, Di, of 5.08 cm, and were 13.97 cm tall, as shown in Fig. 46.

These dimensions satisfy the criteria for stress uniformity in such specimens

proposed by Wright et al. (1978) and DeNatale and Vrymoed (1981):[
Ri/Ro > 0.65 (37)

H0 5.44V VR1 - R2 (38)

[
I
I
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i where Ri and Ro are the inside and outside radii of the hollow cylinder, respectively.

All specimens were prepared by the dry tamping undercompaction technique

(Ladd 1978) using eight layers 1.27 cm thick. The undercompaction value of the

bottom layer was chosen equal to 5%. Undercompaction was used instead of other

alternative techniques because it produces uniform samples which can be easily

I reproduced (Baziar 1987).

Once the specimen was completed, it was placed in the triaxial cell which was

filled with deaired water to prevent migration of air through the specimen

membrane. After this the specimen was percolated upwards with CO2 to eliminate

air, and was then saturated with deaired distilled water and backpressured

I overnight to ensure good saturation.

The next day the B parameter was measured, and then the cell with the

specimen was placed in the MTS axial/torsional device.

I

I 3.3 Testing Program

K The testing program consisted of a series of monotonic tests and of another

series of cyclic tests. The monotonic tests were used to classify the material based

on its monotonic stress-strain behavior under various inclinations of principal

stress, while the cyclic tests were used to define the yield surfaces (Kotsanopoulos

1989).

The specimens were composed of a mixture of sieve 40-50 (0.43 to 0.3 mm)

3 and sieve 60 - 80 (0.25 to 0.18 mm) glass beads with ratio 1:2 in weight. The grain

size distribution of this material appears in Fig. 1I7. A mixture was used instead ofI
I
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one size of spheres as a result of instabilities and sliding which occurred during

monotonic tests of specimens composed of identical particles. It appears that these

I instabilities and sliding are the result of regular packings and crystalline regions

which are present in assemblages of equal spheres, but not necessarily in assemblies

of particles of unequal diameters All specimens were prepared by the same

technique described in Section 3.2 and their initial void ratio, e, was the same in all

tests. In both monotonic and cyclic tests, the mean stress, Ouc, was kept constant

I during loading by changing the cell pressure accordingly. Therefore, each

experiment corresponds to a single ir-plane defined by this o-.

Five drained monotonic radial shear tests were performed as listed in Table 3.

In three of these tests, the specimens were isotropically consolidated to ac L= 140

KPa, while the fourth specimen was consolidated to 277 Kpa and the fifth to 414

I KPa. For each of the three radial shear Lests performed at oc L i40 KPa, ihe

principal stress formed a constant angle w with respect to the vertical direction,

with w = 00, 450 and 90 ° . These correspond to vertical compression, torsional,

shear, and vertical extension, respectively. Ir all tests the mean stress was kept

constant at the oc of the test (z 140 KPa). The other two tests were performed in

compression (w =00). The test conditions and stress parameters of each monotonic

test are summarized in Table 4.

The two last columns of Table 4 include the angle of shear direction, 0, and

the coefficient b used in the five tests. The angle 0 defines the direction of the

octahedral shear stress in the octahedral plane and is given by tan 0 = [3(02 - a3)1

(2o - C2 - L73)]1/2 The coefficient b gives the relative magnitude of the

intermediate principal stress o-, and is defined as b = (a2 - LrI)/( 3 - L71).

I
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I The results from the monotonic tests performed at u, L= 140 KPa appear in

Figs. 48 and 49. Figure 48 portrays the stress-strain curves (roct/"c vs 'Yoct)

obtained from these tests; it can be seen that while all stress paths give different

peak strengths, the shear test (w=45 ° , 0=300) has also a different initial stiffness;

this suggests that the material is not isotropic. Figure 49 presents the measured

volumetric strain as a function of the octahedral shear strain, and here again, the

behavior is different depending cn the stress path followed.

The resulting stress-strain curves from three monotonic compression tests at

o = 136.8, 277. and 414.1 KPa appear in Fig. 50, and the volumetric behavior is

shown in Fig. 51. Another interesting plot is the variation of octahedral shear stress

(Toct) with volumetric strain, which appears in Fig. 52; plots like this are used in

constitutive law modelling, since they indicate at which stress level volumetric

I strain starts to accumulate.

I

3.4 Experimentally Obtained Yield Surfaces

I As discussed previously, granular media exhibit nonlinear inelastic

stress-strain behavior even at very small strains. Thus, cohesionless aggregates do

not have a clearly defined elastic region, and as a result each initial yield surface can

not be defined the way it is done in metals; as the locus of all points beyond which

plastic deformation occurs. To assume a mathematical model of the type proposed

I by Mroz (1967) or Prevost (1978), which describes the nonlinear behavior of

materials by a number of yield surfaces associated with a constant elastoplastic

modulus would link the results of this research to a specific type of model and would

I
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Ialso be very difficult to achieve in the laboratory. Consequently, a yield surface was

not defined here as the locus of all points with d cinstant elastoplastic modulus.

Instead, the yield surface was defined as the locus of all points in stress space ("z0 ,

3 (Ozz - Orr)/2 ) having the same total octahedral shear strain 7yoct = 0.05% or 0.10%

in monotonic tests. This definition of yield surface is similar to that used by Sture

et al. (1987) for studying the yielding characteristics of sand.

Figure 53 sketches the initial yield surface obtained from the hollow

cylindrical tests on glass beads described in the previous section. Each point of the

I yield surface corresponds to a different drained monotonic radial shear test

conducted on a new specimen.

Then, two series of two reversible (cyclic) experiments each were conducted in

order to define the hardening characteristics of the yield surface when the specimen

I is prestrained in: i) compression, and ii) shear (torsion). The test conditions and

stress parameters of each reversible test are summarized in Table 5. The sequence

of loading paths for these tests is shown in Fig. 53, where the numbers may be

followed to identify the applied stress path. Each specimen was prestressed to point

R, (x = a, t) in stress space which is called the "Reference" point. Then the load

U was increased until a change in octahedral strain of 0.05% was detected (points I in

Fig. 53), wherupon the load was reversed to R. and then further decreased to point

3, defined by I-(R x) - I(3), = 005%. This probing procedure was repeated in

different directions until all indicated points on the yield surface had been defined

(see Fig. 53). Throughout the experiment, the mean stress was kept constant.

I Since this procedure cannot be implemented manually, a data acqt.' ition/ control

software was developed to control the above experiments, and the corresponding

flowchart is shown in Fig. 54.

I
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As described above, stress increments such as used above (for example to go

from points 1 to 3 in Fig. 53) were either a torsional or a compressioni increment

depending on the test, and torsion and compression increments were not applied

I simultaneously, so as not to distort the shape of the yield surface. While it is true

that in order to reach a yield surface a stress must be applied which may cause the

yield surface to slightly displace or distort, the stress paths described above

minimize this effect by cancelling it (e.g., stress path 9-10-11-12 in Fig. 53). This

I occurs because the yield surface is expected to be symmetric about either the

horizontal deviatoric stress or the shear axis, depending on the test. This procedure

is different from that employed by Peters (1988), in which the yield surface is

determined by radial stress paths on different specimens, and from that followed by

Phillips et al. (1972), see Fig. 5. On the other hand, it is very siuiilar to that

N utilized for composite materials by Dvorak et al. (1988).

One important decision in this work was to use the prestress point R, as the

"reference" point from which all stress probes start. Dvorak et al. (1988) used the

same technique, but started the stress probes from the midpoint between points 1

and 3 (Fig. 53) in stress space. Point 3, as well as all other points on the yield

I surface- was defined by Dvorak et al. as the point at which nonlinearity starts. Soils,

however, do not have a linear region beyond which permanent deformations occur,

and thus another criterion must be used to select the reference point, which is

critical because it controls the shape of the yield surface. Prestress point R. was

chosen herein for reference because it is the prestraining to this point which controls

I the subsequent yielding behavior of the specimen. Therefore, it was decided to start

all stress probes from point R. in stress space. If soils had a clearly defined linear

elastic and plastic regions, this method would coincide with that of Dvorak et al.

I
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(1988). Although point R. remains more or less in the same position in stress space,

there is permanent deformation associated with these cyclic stress paths.

I Unfortunately, this is a result of the properties of the specimen, and little can be

done other than keeping the strains as small as possible. On the other hand, if a

multiple yield surface model is envisioned, these stress paths would correspond to

the stress probes needed to define any of the nested yield surfaces. This yield

surface would then be analogous to those of Mroz (1967) or Prevost (1978), since it

i would also map a state of the material on a parameter, in this case ^foct.

Figures 55 and 56 summarize the initial and subsequent positions of yield

surfaces defined from monotonic and cyclic tests with ac L' 140 KPa. A total of four

cyclic tests were performed; in all of them the mean stress was kept constant and

equal to the initial confining pressure, o-, =v 140 KPa. Therefore all experimental

data lie on this r-plane. Of these four tests, two were prestrained in shear while

two were prestrained in compression. In the first series of experiments, the yield

surface was defined as the locus of all points with 'yoct = 0.1%. In ihe second series

of experiments the strain level defining the yield surface was reduced to 0.05%. A

further reduction of the strain level is anticipated in the future, so as to approach

the threshold strain, y, _, 1.0X10 -4 to 2.0X10 4 , as close as possible. The specimens

of the second series of the experiments were also subjected to 600 cycles of torsional

I shear strain amplitude 7o = 0.07 % in strain-control under drained conditions prior

to the actual experiment. This was done to reduce the inherent anisotropy created

during the sample preparation and to stiffen the sample on horizontal planes.

However, it was found that this neither stiffened nor disturbed the specimen.

The results of the first series of tests appear in Fig. 55. The yield surfaces are

I detned as the loci of all points with -yoct=0. % and were obtained by prestraining

I
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one sample in torsion to yp = 'yoct = 0.3% and the other sample in compression to

p = -- oct = 0.79%. In the second series of the experiments the btrain yield criterion

Iwas reduced by 50%, to yoct=-0.05% (Fig. 56). One sample was prestrained in shear

I (torsion) to 0.3% and a second sample was prestrained in compression to Yoct =

0.5%. In both series of tests oc was kept constant at about 10 KPa.

The results suggest a significant prestraining effect and distortion of the

chosen yield surface in the direction of loading. The size of the yield surface has

l decreased in size in the direction of prestraining, while in the other direction the size

remains essentially unchanged. Moreover, it is observed that the yield surface

translated in stress space. These findings are important, since the usual hypothesis

of pure kinematic hardening would have predicted that the new, translated yield

surface size would be the same as before.

I Finally a "failure" surface was constructed out of all monotonic tebts; this

surface is shown in Fig. 57, where the deviatoric stress q= (a'l-93)/2 is plotted

versus p = (at + a3)/2. The shape of this failure surface can be approximated as

conical. It is reasonable to expect that this failure surface must be very similar to

the yield surfaces.

I These two series of cyclic experiments are in excellent agreement between

themselves; moreover, they are in general qualitative agreement with results

obtained in other materials such as ir Ad metal matrix composites. Since the

common plastic deformation mechanism between polycrystalline aggregates and

granular assemblies is sliding taking place along sliding planes, it is believed that

l these observed results are a consequence of those sliding mechanisms occuring at the

micromechanical level.

I
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4. NUMERICAL SIMULATIONS

I In order to confirm the experimental results presented in Section 3 and to gain

insight into the micromechanical processes occuring at the contact level, a series of

2-D numerical simulations was performed using program CONBAL-2, along stress

paths very similar to the experimental ones, on the random array of 531 unequal

spheres presented in Section 2.7. This array was used since the glass beads tested in

I the laboratory was composed of spheres of different diameters.

The stress paths followed are very similar to those of the laboratory

experiments presented in Fig. 53, with two minor differences: i) the octahedral

strain used as the yield criterion was first set to -roct=0.05% and was later reduced

to 0.02%, which is very close to the threshold strain, -t; and ii) the numerical

m simulations were strain controlled, thus all points were defined in strain space.

Because of the two-dimensional nature of the numerical simulations, qualitative

rather than quantitative agreement between the simulations and the laboratory

experiments was sought. These two differences between numerical simulations and

laboratory experiment are not very important, and if anything, the smaller 7oct used

m in the simulations are better, since a smaller yoct is closer to the threshold strain

and thus defines a region near the cut-off point between permanent geometrical

changes and effects due to sliding taking place at the contacts.

The 531 quartz array was consolidated to 130 KPa; the particle configuration

and the micromechanical statistics at this stage were presented in Figs 39 and 40.

I Then, two series of calculations simulating four tests on four initial identical

specimen were conducted in which the array was prestrained in: i) compression to

two different strain levels, and ii) in shear to two different strain levels. All four

I
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3 "specimens" were prestrained first to -yoct=0.98% and subsequently to 7oct=2.33%.

The mean stress was kept constant in all cases at ac=130 KPa throughout each

U simulation.

Figure 5. portrays the results of the simulations which defined the yield

surface as the locus of all points with -7oct=0.05%. There are five yield surfaces in

this figure, the circular one being the initial surface which was defined by four

monotonic tests. The "subsequent" yield surfaces correspond to prestraining to two

I strain levels, -fp = -7oct = 0.98% and 2.33% as marked. It can be seen that there is a

significant change in the shape of the prestrained yield surface: it has shortened in

the direction of loading while its dimension in the other direction has not changed.

Moreover, this shrinking of the yield surface increases with increasing prestraining.

Finally, the surface became flatter in the direction opposite to the direction of

I loading. These results are very similar to those obtained in the laboratory

experiments on glass beads (Figs. 55 and 56) and to those obtained in other

materials by various researchers (Fig. 59).

Figure 60 portrays the results of the numerical simulations where the

magnitude of the octahedral shear strain defining the yield surface was

i ")yoct = 0.02%. The results are again very similar to those of the simulation in Fig.

58, to the laboratory experiments on glass beads (Figs. 55 and 56) and on other

materials (Fig. 59). The fact that the yield surfaces defined by 'Yoct=0.02% are

quite similar in size to those defined by yoct=0.05% suggests that at these strain

levels the granular material behaves more or less elastically. Moreover, it has been

shown (Ng 1989) that there are very small permanent volumetric changes in these

numerical simulations at a strain level of 0.02% or less, which confirms the fact that

I
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I the effects of the distortion of the yield surfaces observed is not a consequence of

i accumulated strain, but rather a result of sliding and other micromechanical

phenomena occurring at the particle level.

I
i

I
I
i
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I
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1 5. PROPOSED CONSTITUTIVE LAW FOR GRANULAR MEDIA

This section presents the main features of a proposed constitutive law for

granular media using the results presented in this report. Given the limitations of

the existing constitutive laws as discussed in Section 1.1, the authors have taken a

I different approach to the formulation of a constitutive law for dry granular soil.

This approach has as a starting point the micromechanical force-deformation

contact law obtained by Seridi and Dobry (1984) and Dobry et al. (1989). In that

contact model, there is an infinite number of yield surfaces of conical shape, all

parallel to each other at all times. A stress-strain equivalent of this

I force-deformation contact law will be used for the proposed constitutive relation of

granular media, modified to incorporated additional important features observed in

granular soils.

The model is based on the results of the laboratory experiments presented in

Section 3, enhanced by the numerical simulations discussed in Section 4. The

proposed model uses the most important features of the contact law (Dobry et al.

1989) and is capable of incorporating the distortion of the shape of the yield surfaces

I due to loading, previously discussed.

I Since the contact model was naturally formulated in terms of forces, the

mathematical formulation used as the basis of the proposed constitutive law is the

viscoplasticity model presented by Yen (1979) and Yen and Eisenberg (1987), but

without the rate effects. This model must be modified to make it dependent on the

I mean stress, ac = p = oii/3, and the hardening and flow rules must be changed to

match those of the contact law as well as the experiments. The yield surfaces are

initially conical, and they are permitted to distort in the direction of loading asI
I
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I observed in the experiments and numerical simulations (Figs. 55, 56, 58, and 60).

The flow rule is associative only on the deviatoric plane and the hardening rule

allows for parallel translation of the yield surfaces in a way similar to that of the

* contact model.

The main aspects of the proposed constitutive law are summarized below. In

I 3-D stress space, the initial deviatoric stress state, Sij, is referred to the subsequent

state, sij, through:

Sij " Sij - aij " Rij (39)

I where sij is the deviator stress, aij the location of the center of any given yield

surface (there is a large number or even an infinite number of them) in deviatoric

stress space, and Rij is a measure of the distortion of this yield surface. The term

Rij does not appear in the force-displacement contact model, since the yield

surfaces were not allowed to distort; it is used here for the first time, in an attempt

to present a model which is general enough to be modified to take into account the

distortion of the yield surfaces. Usually, Rij is a function of the previous deviatoric

stress state, Sij, and of the history of material dcformation (Eisenberg and Yen

1984). Assuming a yield function F of the same form as the micromec'anical

contact l.w (Dobry et al. 1989), it will be:I
F = (sii - aij + Rij)(sij - aij + Rij) - m 2(p - pi) 2  (40)

where m is a material constant related to the friction angle of the soil and defined

Ithrough laboratory experiments, p = ii is the value of the hydrostatic stress for aI
I
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point on the cone, while pi is the hydrostatic stress at the apex of the same cone.

Figure 61 presents several conical yield surfaces and a deviatoric plane (?r - plane)

in principal stress space. Figure 62a shows the intersection of one of these yield

functions with a r - plane, which portrays the simultaneous translation (kinematic

hardening) and distortion of the resulting yield circle. Figure 62b defines the

corresponding distortion term Rij used in Eq. 40.

If the distortion term, Rij is eliminated, the yield function reduces to

I1
F = (Sij - Oij)(ij - aj) - m2 (p - pi)2  (41)

which is the exact stress equivalent of the micromechanical force-displacement

contact law (Dobry et al. 1989).

I The flow rule is described by:

dctl 3-R- (doij nij)(nkl + 6kj Umm) (42)
pI

where Hp is the plastic tangent modulus. In Eq. 42, nij is the deviatoric part of the

normal vector to the yield surface, nij, and u.. is the spherical part of another

vector UkI, so that normality is observed o on the deviatoric plane. An example

of the form of u.. is given by Prevost (1985):

I
, M ( W (43)('M +1

I
I
I
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I where 77 = 3 (sij sij) / 2 /p is a stress ratio, and 7 is a material parameter. Therefore,

I this observation of normality only on the deviatoric plane is a characteristic of the

micromechanical constitutive law, as well as of a number of other models.

CThe hardening and distortion parameters, aij and Rij, can be either

determined a priori or from a combination of results of micromechanical simulations

I and laboratory experiments. The exact form of these parameters is not currently

known for the case of sand, but without loss of generality it can be assumed that

aij = Atvij (44)

Ulij = -Auij (45)

where vij and uij are tensors defining the specific direction of hardening, and A and

A are scalars defining the magnitude of the hardening mechanism. If a finite

number of yield surfaces is used in the model, the kinematic hardening direction,

I vi, can be defined in a number of ways including those propose :)y Prager (1955),

Ziegler (1958), Mroz (1967), and Phillips and Weng (1975). H. ovever, if functions

defining an infinite number of yield surfaces are used such as done in the contact

law, no such rule is necessary. The two scalars, a and A, are related to each other

through the consistency condition.

Yen (1979) and Yen and Eisenberg (1987), using the results from experiments

by Phillips and his coworkers have defined both aij and Rij and used them

successfully in a constitutive law for aluminum. The excellent agreement between

theory and experiment in the case of cyclic loading of aluminum is shown in Fig. 63,

I
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i where the discrete points correspond to the laboratory data and the solid lines to the

model.

As already noted, the above proposed stress equivalent model to the contact

law summarized by Eqs. 39-45 has a number of advantages over the existing

plasticity models for sand, while still lacking in some respects. The advantages

include its foundation on basic micromechanical features such as the behavior at the

interparticle contacts, and its ability to model a number of irrportant observed

macroscopic features such as the pressure dependence of stiffness, the generalized

Mohr-Coulomb failure law and the basic hardening behavior during cyclic shear

loading. Also, as already mentioned and included in Eq. 40, the model can

incorporate the distortion of yield surfaces due to prestraining. Moreover, the

micromechanical basis of the model allows it to be compared directly with the

i contact model through numerical simulations on random packings of spheres, so

3 that the model can be adjusted at the macroscopic level with due consideration to

the underlying micromechanical phenomena.

On the other hand, in its present state the basic model of Eqs. 39-45 still

misses some features which have been observed in sands. The proposed law does not

I model the dilation : :ved in medium and dense granular soils for shear loading

contained in the T-plane, and it does not account for inelastic volumetric strains

due to isotropic consolidation, nor for overconsolidation effects Finally, it does not

i consider initial (inherent, structural, elastic) anisotropy, which would permit the

prediction of the anisotropic wave propagation phenomena reported by Stokoe and

i his co-workers for anisotropically consolidated sand (Knox et al. 1982, Kopperman

et al. 1982).

I
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The dilation can be handled, in principle,by modifying both the hardening and

flow rules. Existing models such as Prevost's (1985) account for this by allowing

rotation as well as translation of the yield surfaces (Fig. 64). To account for this,

the yield surfaces in our proposed model could be permitted to rotate after a certain

strain level has been reached, whereupon dilation will occur (Fig. 65). This is

consistent with the experimental finding in sand that dilation occurs in medium and

dense sand only after a certain strain level beyond the threshold has been reached.

On the other hand, the experimental evidence presented in Fig. 52 as well as other

observations on sand from the literature suggest that dilation under shear occurs at

relatively large strains. Therefore, the flow rule does not have to be modified at

small strains.

The inelastic volumetric strains during isotropic consolidation and the

I response of overconsolidated soil can be obtained with the help of a "cap" (Roscoe et

al. 1958, DiMaggio and Sandier 1971, Baladi and Rohani 1979).

The problem of inherent (structural) anisotropy - especially important for

3 anisotropically consolidated sand - is quite complex even in the case of metal

plasticity. "Inherent anisotropy" means that the material is anisotropic in its

U reference state. After plastic flow has occurred, in general, the material ceases to

have the anisotropy of the reference state. A very good example is th4 case of rolled

steel; in its stress free state, before rolling, the material is isotropic and its behavior

3 could be described by isotropic functions. After the sheet of steel has been subjected

to rolling, it may exhibit orthotropic symmetry, and if this is to be the reference

I state, the material behavior should be described by orthotropic functions with

respect to the new reference state. The case of soil anisotropy is very similar: if the

behavior of an anisotropically consolidated sand is to be described, this has to be

I
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done with orthotropic functions. In general, simple solutions applied only to the

elastic part of the strain, such as proposed by Hardin (1980), are not appropriate.

For example, if the tests of Stokoe and his coworkers are to be taken into account,

orthotropic functions are needed for the description of the phenomenon. It is

reported by Hill (1950) and Dafalias (1979) that the yield condition must take into

account the material symmetries present in the initial (reference) state. The

direction of flow is dependent upon those, and the yield surface must take them into

account. This not only complicates the expressions of the yield surface

considerably, but the implementation of the law as well. For example, according to

Dafalias (1979), the expression for the yield condition of an orthotropic material

becomes:

I f = HijklSijSkl - k2 (46)

where Hijkl is a fourth rank tensor which depends on the material symmetry and

3 the plastic strain and k is the yield stress. Despite its obvious complexity, the

plasticity of initially anisotropic materials can be taken into account in a number of

I ways for the cases of transverse isotropy and orthotropy. The case of transverse

* isotropy is very common in the mechanics of composite materials (Dvorak and

Bahei-El Din, 1982), and is handled with the aid of four stress "pseudo-invariants"

3 which take into account the symmetries of the material. In the case of soils,

Dafalias (1986), Dafalhas and Herrmann (1986) and Anandarajah and Dafalias

3 (1986) have proposed a general plasticity model which has been applied to model

isotropic and anisotropic clay in undrained condition. The case of drained loading

I
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I of sand is more complex, since its behavior is pressure dependent and its material

I symmetry is affected by variations in the mean stress Oii/ 3.

I
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* 6. CONCLUSIONS

The results of a systematic micromechanical study was presented on the

stress-strain behavior of granular media, aimed at developing a constitutive law for

sands and other granular materials.

As summarized in Table 1, the research focused on the computation of the

stress strain response of arrays of rough, elastic quartz spheres of similar sizes

simulating uniform, rounded quartz sand. It started from the RPI general solution

for the nonlinear force displacement relation at the contact between two spheres

(program CONTACT), and it continued with analyses of regular and random arrays

of spheres using a variety of analytical and numerical techniques. The research

progressed from very small (,y - 10-6) to very large strains (y z 10-2 to 10-1), and it

included comp risons at different strain levels between the results obtained with

these techniques.

I A number of regular arrays of spheres were analyzed, and then they were

combined into regular/random arrays to attain arbitrary macroscopic void ratios.

These regular/random array models were loaded isotropically and their macroscopic

response was evaluated at very small strains by the Self Consistent Method. Then,

another regular/random array model was developed and analyzed by a 2D Nonlinear

I Finite Element method. This Finite Element model was loaded first isotropically

and then anisotropically to "failure" (corresponding to the beginning of generalized

sliding and particle rearrangement), and it provided information from y z 10-8 up to

7 - 10-4. Finally, 2D numerical simulations of random arrays were implemented

using a Nonlinea- Distinct Element technique, covering the whole strain range from

I 7y 10- 6 to 10-1. In addition, comparisons between these calculations and

I
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measurements in sands and other granular materials were performed, including

experiments available from the literature and axial-torsional tests on glass beads

I conducted as part of this research.

It was found that all computational techniques are in very good agreement

between themselves as well as with the experimental results. Some specific

conclusions for the different strain levels are as follows:

1) In a granular medium isotropically loaded under a given macroscopic

I pressure, there is a unique relation between the shear stiffness at very small strains

(Gax) and the average number of load-transmitting contacts per particle, with

Gmax increasing with the number of contacts. This was confirmed by all techniques

3 used in the report.

2) In the same isotropically loaded granular medium, the relation between

I void ratio and G.m,, is not unique. For the same void ratio and particle geometric

arrangement, Guax can vary by a factor of three depending on the number of

contacts. In a typical sand, Gmax is much smaller than predicted from a regular

3array or combination of regular arrays having the same macroscopic void ratio as

the sand. However, millions of cycles of small strain amplitude (10-4 < yr < 10-3)

I will increase the stiffness of the sand and make it approach the theoretical value

predicted by the Self Consistent method, by increasing the number of contacts while

the void ratio stays essentially constant.

3) The P-wave velocity through an anisotropically loaded 2D granular

medium depends mainly or exclusively on the principal stress in the direction of

wave propagation. This seems to be the result of a specific force transmission

mechanism throughout the medium, with the load paths oriented more or less

parallel to the directions of the applied principal stresses. In this way, the behavior

I
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I of the medium resembles that of a simple cubic array, where the stiffness in a

principal direction is not influenced by the stresses in the other direction. This

result was confirmed for 2D by both the Nonlinear Finite Element model and the

Nonlinear Distinct Element simulations. Based on this analysis and on available

experimental results on sand, it is hypothesized that a similar conclusion and force

transmission mechanism is also valid in 3D, for both P-wave and S-wave velocities.

4) In the small strain range below the threshold ('y < -rt - 10-4 for quartz

spheres), the shear stress-strain behavior of the medium is controlled by the

original arrangement of the grains and by the nonlinear force-deformation response

at the contacts, and essentially no rearrangement of particles takes place. Aspects

of this small strain behavior including the existence of the threshold were known

from previous experimental and analytical research. The Nonlinear Finite Element

I model confirmed this behavior. It also provided additional insight on the mechanics

of small strain response, and on the process which culminates in particle separation

and rearrangement when the shear strain reaches the threshold.

3 5) A major role in the shear stress-strain behavior of granular media is

played by sliding taking place between the grains. Available analytical and

I experimental studies in polycrystalline aggregates such as metals suggest that

specific sliding directions at the interparticle contacts control the features of specific

portions of the yield surface of the medium in stress ---ce. This was verified with

our Nonlinear Finite Element calculations of random/regular arrays of spheres. One

corollary of these studies in metals is that the yield surface not only translates due

I to shear loading but also shrinks and distorts in the direction of loading, forming a

smooth vertex at the loading point. This same behavior was observed in our 2D

I
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I simulations of random arrays of quartz spheres using the Nonlinear Distinct

Element, as well as in our axial-torsional tests on glass beads.

6) A constitutive law for granular media was proposed based on these

findings, which is the stress-strain equivalent of the RPI force deformation model

for the interparticle contact, enhanced to incorporate dilation for strains above the

threshold, and to allow for distortion of yield surfaces in the direction of loading.

Basic characteristics of this model include an infinite number of originally parallel

yield surfaces of conical shape, as well as modified normality and kinematic strain

hardening rules.
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TABLE 2. RPI COMPUTER PROGRAM CONBAL-2

I (after Ng and Dobry 1989)

CONBAL-2 = CONTact truBAL in 2-D

TRUBAL (Peter Cundall) CONTACT (RPI)

Distinct Element Method General Solution to Mindlin-HertzU Contact Problem;
3D Random Array of Spheres Reproduces identically all Available

nC 

nt c 
RPro 

l e m;
Analytical Results;

Periodic Space Program Accepts as Input Arbitrary
Time History of Force or Displacement;

tLinear Pressure-Independent Can be Used Approximately for
Arbitrary Contact Compliance Spheres of Somewhat Different Size

I CO E"L-2 = TRUBAL + CONTACT - 1D + VECTORIZATION

E
I
I
I
I
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I TABLE 3. Properties of Glass Beads

I

I Specific Gravity 2.45 to 2.50

Roundness Minimum of 70%

Poisson's Ratio 0.21

Young's Modulus 68.97 x 106 KPa

Rigidity (Shear) Modulus 29.66 x 108 KPa

I Static Coefficient of Friction 0.9 to 1.0

Dynamic Coefficient of Friction 0.7 to 0.8

I
I
I
I
I

I
I

I
I
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TABLE 4. Summary of Monotonic Radial Shear Tests on Glass Beads SpecimensI
I

Type Isotropic Void Relative Pore Angle Coefficient
of Confining Ratio Density Pres. of b
Test Pressure e Dr Param. Shear
()C % B Direct.

* (KPa) 00

I Compr. (0o) 136.8 0.593 53 0.954 0 0.0

Tors.(450) 141.2 0.603 47 0.963 30 0.5

Ext. (900) 140.0 0.602 48 0.985 60 1.0

I Compr.(0o) 277.0 0.605 46 0.965 0 0.0

Compr.(0o) 414.1 0.603 47 0.955 0 0.0

I
U
I
I
]
I
I
I
I



TABLE 5. Summary of Reversible Tests on Glass Bead Specimens

I
Direction Isotropic Void Relative Pore Pre- Yield
of Pre- Confining Ratio Density Press. Cycling Surface
Straining Pressure e Dr Param. (*) Assoc.

aC % B with
(KPa) I A oct I

m Compres. 137.0 0,595 52 0.987 Yes 0.05%

Torsion 138.1 0.598 50 0.950 Yes 0.05%

I Compres. 139.2 0.597 51 0.954 No 0.1%

i Torsion 139.5 0.604 47 0.978 No 0.2%

I (*) Applied cyclic shear strain 7 = 0.07%. Number of cycles N = 600

I
I
I
I
I
I
I
I
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IFigure 1. Effect of stress induced anisotropy on compresuional wave velocity for

triaxial confinement (Kopperman et al. 1982).I
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Figure 3. Experimentally obtained yield surface of sand from cubical triaxial
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tensile loading with an observed vertex (b), (Lin and Ito 1965).



I (a (b)

'0 Off

Ir 4- ITENSI '4

STRCS a-
to I

ItA /T ENSI LE
VI ~'STRESS, 0

VIt_

Figure~~~~~~~~~~~~~~~ ~ 5. Laigptsfr()intaad()sbeuntyedsrae0Pilp

Figure ~%. 5. Lo din psurfor (a) iniial a Yd(b subsaeqetyldsfas(Piip

I0I
Sp Cef S-S

VO~d1*fO ~ ~ MI~ ~A vid IWic
23 I M*00I __ (a)

U1

040 50 *.7O*j 60 70 so 9

lefisiWt .in. KU?

Figure 6. Experimentally obtained initial and subsequent yield surfaces for aluminum

at 70OF temperature (Phillips and Tang 1972).



I
I
I
I
I

I Simple Cubic Unit Cell Simple cubic structure
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IFigure 7. Simple cubic array of spheres.
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Figure 10. Force-deformation Behavior of Two Elastic Ro h Spheres in Contact:
Analytical Solution for Oscillatinf Oblique Forces with (fa dT/dN > f and
(b) dT/dN < f; (c) N Increasing, T Increasing; (d) Decreasing, T
Increasing; (e) N Increasing, T Decreasing; (f) N Decreasing, T Decreasing;
(Mindlin and Deresiewicz 1953).
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Figure 21. (a) Cut-Away Artistic View of a Space Filling Configuration of Voronoi

Polyhedra Containing Regular Arrays of Spheres (Finney 1983) and (b)
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(Shahinpoor and Shahrpass 1982).
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IFigure 39. 2-D Random Array of 531 Elastic, Quartz Spheres of Two Radii
(R1/R2 = 1.5) Subjected to Isotropic Compression ao = 132 KPa.
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Figure 41. 2-D Random Array of 531 Elastic, Quartz Spheres of Two Radii
(R1/R2 = 1.5) Subjected to Biaial Compression Loading.
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iFigure 59. Experimentally Obtained Yield Loci for Engineering Materials after Shear
Prestrain (a) 1100-04 Aluminum, (b) Overa ed 2024-T7 Aluminum AlloyI (Hefling et al. 1986), (c) 70:30 Brass, and (d) Textured Magnesium (Kelley
and Hosford 1968).

I
I

' " ............ MG .% T"II I



I0

I 04
.-J 0 -

II) 0

cl

LO-

I C.)

Q 0)

-acIi q L
IO 1.



!11

I
I
I
I

I

IFigure 61. Conical Yield Surfaces and Current 7r-plane for Constitutive Law of
Granular Soil of Eqs. 1-7. Position of Yield Cones Correspond to Loading
from 0 to A followed by Stress increment AB. Point B is on the r-plane.

I The Value of p at the Apex of Any Cone (e.g., A, B) is pi.
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Figure 62. Schematic Representation of (a) Translation and (b) Distortion of a Yield
Surface (Yen 1979).
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Figure 63. Predicted and Measured Yield Surfaces in Aluminum (Yen and Eisenberg
1987).

U

iFigure 64. Yield Surface in principal Stress Space. Note the Rotation of the Surface

Around its Apex (Prevost 1985).
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Around the Yield Surface Apex in Order to Account for Dilation.


